Search Results (323512 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50658 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: qcom: fix memory leak in error path If for some reason the speedbin length is incorrect, then there is a memory leak in the error path because we never free the speedbin buffer. This commit fixes the error path to always free the speedbin buffer.
CVE-2022-50655 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ppp: associate skb with a device at tx Syzkaller triggered flow dissector warning with the following: r0 = openat$ppp(0xffffffffffffff9c, &(0x7f0000000000), 0xc0802, 0x0) ioctl$PPPIOCNEWUNIT(r0, 0xc004743e, &(0x7f00000000c0)) ioctl$PPPIOCSACTIVE(r0, 0x40107446, &(0x7f0000000240)={0x2, &(0x7f0000000180)=[{0x20, 0x0, 0x0, 0xfffff034}, {0x6}]}) pwritev(r0, &(0x7f0000000040)=[{&(0x7f0000000140)='\x00!', 0x2}], 0x1, 0x0, 0x0) [ 9.485814] WARNING: CPU: 3 PID: 329 at net/core/flow_dissector.c:1016 __skb_flow_dissect+0x1ee0/0x1fa0 [ 9.485929] skb_get_poff+0x53/0xa0 [ 9.485937] bpf_skb_get_pay_offset+0xe/0x20 [ 9.485944] ? ppp_send_frame+0xc2/0x5b0 [ 9.485949] ? _raw_spin_unlock_irqrestore+0x40/0x60 [ 9.485958] ? __ppp_xmit_process+0x7a/0xe0 [ 9.485968] ? ppp_xmit_process+0x5b/0xb0 [ 9.485974] ? ppp_write+0x12a/0x190 [ 9.485981] ? do_iter_write+0x18e/0x2d0 [ 9.485987] ? __import_iovec+0x30/0x130 [ 9.485997] ? do_pwritev+0x1b6/0x240 [ 9.486016] ? trace_hardirqs_on+0x47/0x50 [ 9.486023] ? __x64_sys_pwritev+0x24/0x30 [ 9.486026] ? do_syscall_64+0x3d/0x80 [ 9.486031] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd Flow dissector tries to find skb net namespace either via device or via socket. Neigher is set in ppp_send_frame, so let's manually use ppp->dev.
CVE-2022-50654 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix panic due to wrong pageattr of im->image In the scenario where livepatch and kretfunc coexist, the pageattr of im->image is rox after arch_prepare_bpf_trampoline in bpf_trampoline_update, and then modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag will be configured, and arch_prepare_bpf_trampoline will be re-executed. At this time, because the pageattr of im->image is rox, arch_prepare_bpf_trampoline will read and write im->image, which causes a fault. as follows: insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c bpftrace -e 'kretfunc:cmdline_proc_show {}' BUG: unable to handle page fault for address: ffffffffa0206000 PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061 Oops: 0003 [#1] PREEMPT SMP PTI CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5 RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0 RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202 RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000 RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030 RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400 R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8 R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10 FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> bpf_trampoline_update+0x25a/0x6b0 __bpf_trampoline_link_prog+0x101/0x240 bpf_trampoline_link_prog+0x2d/0x50 bpf_tracing_prog_attach+0x24c/0x530 bpf_raw_tp_link_attach+0x73/0x1d0 __sys_bpf+0x100e/0x2570 __x64_sys_bpf+0x1c/0x30 do_syscall_64+0x5b/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd With this patch, when modify_fentry or register_fentry returns -EAGAIN from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset to nx+rw.
CVE-2022-50648 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix recursive locking direct_mutex in ftrace_modify_direct_caller Naveen reported recursive locking of direct_mutex with sample ftrace-direct-modify.ko: [ 74.762406] WARNING: possible recursive locking detected [ 74.762887] 6.0.0-rc6+ #33 Not tainted [ 74.763216] -------------------------------------------- [ 74.763672] event-sample-fn/1084 is trying to acquire lock: [ 74.764152] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \ register_ftrace_function+0x1f/0x180 [ 74.764922] [ 74.764922] but task is already holding lock: [ 74.765421] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \ modify_ftrace_direct+0x34/0x1f0 [ 74.766142] [ 74.766142] other info that might help us debug this: [ 74.766701] Possible unsafe locking scenario: [ 74.766701] [ 74.767216] CPU0 [ 74.767437] ---- [ 74.767656] lock(direct_mutex); [ 74.767952] lock(direct_mutex); [ 74.768245] [ 74.768245] *** DEADLOCK *** [ 74.768245] [ 74.768750] May be due to missing lock nesting notation [ 74.768750] [ 74.769332] 1 lock held by event-sample-fn/1084: [ 74.769731] #0: ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \ modify_ftrace_direct+0x34/0x1f0 [ 74.770496] [ 74.770496] stack backtrace: [ 74.770884] CPU: 4 PID: 1084 Comm: event-sample-fn Not tainted ... [ 74.771498] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ... [ 74.772474] Call Trace: [ 74.772696] <TASK> [ 74.772896] dump_stack_lvl+0x44/0x5b [ 74.773223] __lock_acquire.cold.74+0xac/0x2b7 [ 74.773616] lock_acquire+0xd2/0x310 [ 74.773936] ? register_ftrace_function+0x1f/0x180 [ 74.774357] ? lock_is_held_type+0xd8/0x130 [ 74.774744] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.775213] __mutex_lock+0x99/0x1010 [ 74.775536] ? register_ftrace_function+0x1f/0x180 [ 74.775954] ? slab_free_freelist_hook.isra.43+0x115/0x160 [ 74.776424] ? ftrace_set_hash+0x195/0x220 [ 74.776779] ? register_ftrace_function+0x1f/0x180 [ 74.777194] ? kfree+0x3e1/0x440 [ 74.777482] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.777941] ? __schedule+0xb40/0xb40 [ 74.778258] ? register_ftrace_function+0x1f/0x180 [ 74.778672] ? my_tramp1+0xf/0xf [ftrace_direct_modify] [ 74.779128] register_ftrace_function+0x1f/0x180 [ 74.779527] ? ftrace_set_filter_ip+0x33/0x70 [ 74.779910] ? __schedule+0xb40/0xb40 [ 74.780231] ? my_tramp1+0xf/0xf [ftrace_direct_modify] [ 74.780678] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.781147] ftrace_modify_direct_caller+0x5b/0x90 [ 74.781563] ? 0xffffffffa0201000 [ 74.781859] ? my_tramp1+0xf/0xf [ftrace_direct_modify] [ 74.782309] modify_ftrace_direct+0x1b2/0x1f0 [ 74.782690] ? __schedule+0xb40/0xb40 [ 74.783014] ? simple_thread+0x2a/0xb0 [ftrace_direct_modify] [ 74.783508] ? __schedule+0xb40/0xb40 [ 74.783832] ? my_tramp2+0x11/0x11 [ftrace_direct_modify] [ 74.784294] simple_thread+0x76/0xb0 [ftrace_direct_modify] [ 74.784766] kthread+0xf5/0x120 [ 74.785052] ? kthread_complete_and_exit+0x20/0x20 [ 74.785464] ret_from_fork+0x22/0x30 [ 74.785781] </TASK> Fix this by using register_ftrace_function_nolock in ftrace_modify_direct_caller.
CVE-2022-50646 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: hpsa: Fix possible memory leak in hpsa_init_one() The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to clean1 directly, which frees h and leaks the h->reply_map. Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead free h directly.
CVE-2022-50645 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper() As the comment of pci_get_domain_bus_and_slot() says, it returns a PCI device with refcount incremented, so it doesn't need to call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI device needs to be put in the error path.
CVE-2022-50642 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_typec: zero out stale pointers `cros_typec_get_switch_handles` allocates four pointers when obtaining type-c switch handles. These pointers are all freed if failing to obtain any of them; therefore, pointers in `port` become stale. The stale pointers eventually cause use-after-free or double free in later code paths. Zeroing out all pointer fields after freeing to eliminate these stale pointers.
CVE-2022-50639 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io-wq: Fix memory leak in worker creation If the CPU mask allocation for a node fails, then the memory allocated for the 'io_wqe' struct of the current node doesn't get freed on the error handling path, since it has not yet been added to the 'wqes' array. This was spotted when fuzzing v6.1-rc1 with Syzkaller: BUG: memory leak unreferenced object 0xffff8880093d5000 (size 1024): comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720 [<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130 [<000000004e107011>] io_wq_create+0x7b9/0xdc0 [<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d [<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba [<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce [<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80 [<000000008a8a7508>] do_syscall_64+0x5d/0x90 [<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-50637 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: qcom-hw: Fix memory leak in qcom_cpufreq_hw_read_lut() If "cpu_dev" fails to get opp table in qcom_cpufreq_hw_read_lut(), the program will return, resulting in "table" resource is not released.
CVE-2022-50636 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix pci_device_is_present() for VFs by checking PF pci_device_is_present() previously didn't work for VFs because it reads the Vendor and Device ID, which are 0xffff for VFs, which looks like they aren't present. Check the PF instead. Wei Gong reported that if virtio I/O is in progress when the driver is unbound or "0" is written to /sys/.../sriov_numvfs, the virtio I/O operation hangs, which may result in output like this: task:bash state:D stack: 0 pid: 1773 ppid: 1241 flags:0x00004002 Call Trace: schedule+0x4f/0xc0 blk_mq_freeze_queue_wait+0x69/0xa0 blk_mq_freeze_queue+0x1b/0x20 blk_cleanup_queue+0x3d/0xd0 virtblk_remove+0x3c/0xb0 [virtio_blk] virtio_dev_remove+0x4b/0x80 ... device_unregister+0x1b/0x60 unregister_virtio_device+0x18/0x30 virtio_pci_remove+0x41/0x80 pci_device_remove+0x3e/0xb0 This happened because pci_device_is_present(VF) returned "false" in virtio_pci_remove(), so it called virtio_break_device(). The broken vq meant that vring_interrupt() skipped the vq.callback() that would have completed the virtio I/O operation via virtblk_done(). [bhelgaas: commit log, simplify to always use pci_physfn(), add stable tag]
CVE-2022-50634 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: power: supply: cw2015: Fix potential null-ptr-deref in cw_bat_probe() cw_bat_probe() calls create_singlethread_workqueue() and not checked the ret value, which may return NULL. And a null-ptr-deref may happen: cw_bat_probe() create_singlethread_workqueue() # failed, cw_bat->wq is NULL queue_delayed_work() queue_delayed_work_on() __queue_delayed_work() # warning here, but continue __queue_work() # access wq->flags, null-ptr-deref Check the ret value and return -ENOMEM if it is NULL.
CVE-2022-50633 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: qcom: Fix memory leak in dwc3_qcom_interconnect_init of_icc_get() alloc resources for path handle, we should release it when not need anymore. Like the release in dwc3_qcom_interconnect_exit() function. Add icc_put() in error handling to fix this.
CVE-2025-40328 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_close_cached_fid() find_or_create_cached_dir() could grab a new reference after kref_put() had seen the refcount drop to zero but before cfid_list_lock is acquired in smb2_close_cached_fid(), leading to use-after-free. Switch to kref_put_lock() so cfid_release() is called with cfid_list_lock held, closing that gap.
CVE-2025-40327 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix system hang caused by cpu-clock usage cpu-clock usage by the async-profiler tool can trigger a system hang, which got bisected back to the following commit by Octavia Togami: 18dbcbfabfff ("perf: Fix the POLL_HUP delivery breakage") causes this issue The root cause of the hang is that cpu-clock is a special type of SW event which relies on hrtimers. The __perf_event_overflow() callback is invoked from the hrtimer handler for cpu-clock events, and __perf_event_overflow() tries to call cpu_clock_event_stop() to stop the event, which calls htimer_cancel() to cancel the hrtimer. But that's a recursion into the hrtimer code from a hrtimer handler, which (unsurprisingly) deadlocks. To fix this bug, use hrtimer_try_to_cancel() instead, and set the PERF_HES_STOPPED flag, which causes perf_swevent_hrtimer() to stop the event once it sees the PERF_HES_STOPPED flag. [ mingo: Fixed the comments and improved the changelog. ]
CVE-2022-50631 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RISC-V: kexec: Fix memory leak of fdt buffer This is reported by kmemleak detector: unreferenced object 0xff60000082864000 (size 9588): comm "kexec", pid 146, jiffies 4294900634 (age 64.788s) hex dump (first 32 bytes): d0 0d fe ed 00 00 12 ed 00 00 00 48 00 00 11 40 ...........H...@ 00 00 00 28 00 00 00 11 00 00 00 02 00 00 00 00 ...(............ backtrace: [<00000000f95b17c4>] kmemleak_alloc+0x34/0x3e [<00000000b9ec8e3e>] kmalloc_order+0x9c/0xc4 [<00000000a95cf02e>] kmalloc_order_trace+0x34/0xb6 [<00000000f01e68b4>] __kmalloc+0x5c2/0x62a [<000000002bd497b2>] kvmalloc_node+0x66/0xd6 [<00000000906542fa>] of_kexec_alloc_and_setup_fdt+0xa6/0x6ea [<00000000e1166bde>] elf_kexec_load+0x206/0x4ec [<0000000036548e09>] kexec_image_load_default+0x40/0x4c [<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322 [<0000000040c62c03>] ret_from_syscall+0x0/0x2 In elf_kexec_load(), a buffer is allocated via kvmalloc() to store fdt. While it's not freed back to system when kexec kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing riscv specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there.
CVE-2025-42877 1 Sap 3 Content Server, Internet Communication Manager, Web Dispatcher 2025-12-09 7.5 High
SAP Web Dispatcher, Internet Communication Manager (ICM), and SAP Content Server allow an unauthenticated user to exploit logical errors that lead to a memory corruption vulnerability. This results in high impact on the availability with no impact on confidentiality or integrity of the application.
CVE-2025-40337 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Correctly handle Rx checksum offload errors The stmmac_rx function would previously set skb->ip_summed to CHECKSUM_UNNECESSARY if hardware checksum offload (CoE) was enabled and the packet was of a known IP ethertype. However, this logic failed to check if the hardware had actually reported a checksum error. The hardware status, indicating a header or payload checksum failure, was being ignored at this stage. This could cause corrupt packets to be passed up the network stack as valid. This patch corrects the logic by checking the `csum_none` status flag, which is set when the hardware reports a checksum error. If this flag is set, skb->ip_summed is now correctly set to CHECKSUM_NONE, ensuring the kernel's network stack will perform its own validation and properly handle the corrupt packet.
CVE-2025-42896 1 Sap 1 Businessobjects Business Intelligence Platform 2025-12-09 5.4 Medium
SAP BusinessObjects Business Intelligence Platform lets an unauthenticated remote attacker send crafted requests through the URL parameter that controls the login page error message. This can cause the server to fetch attacker-supplied URLs, resulting in low impact to confidentiality and integrity, and no impact to availability.
CVE-2025-40338 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Do not share the name pointer between components By sharing 'name' directly, tearing down components may lead to use-after-free errors. Duplicate the name to avoid that. At the same time, update the order of operations - since commit cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via config") the framework does not override component->name if set before invoking the initializer.
CVE-2025-40336 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/gpusvm: fix hmm_pfn_to_map_order() usage Handle the case where the hmm range partially covers a huge page (like 2M), otherwise we can potentially end up doing something nasty like mapping memory which is outside the range, and maybe not even mapped by the mm. Fix is based on the xe userptr code, which in a future patch will directly use gpusvm, so needs alignment here. v2: - Add kernel-doc (Matt B) - s/fls/ilog2/ (Thomas)