Search Results (325380 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68225 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: lib/test_kho: check if KHO is enabled We must check whether KHO is enabled prior to issuing KHO commands, otherwise KHO internal data structures are not initialized.
CVE-2025-68226 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix incomplete backport in cfids_invalidation_worker() The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in smb2_close_cached_fid()") was an incomplete backport and missed one kref_put() call in cfids_invalidation_worker() that should have been converted to close_cached_dir().
CVE-2025-68231 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/mempool: fix poisoning order>0 pages with HIGHMEM The kernel test has reported: BUG: unable to handle page fault for address: fffba000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page *pde = 03171067 *pte = 00000000 Oops: Oops: 0002 [#1] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca Tainted: [T]=RANDSTRUCT Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17) Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56 EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8 DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287 CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690 Call Trace: poison_element (mm/mempool.c:83 mm/mempool.c:102) mempool_init_node (mm/mempool.c:142 mm/mempool.c:226) mempool_init_noprof (mm/mempool.c:250 (discriminator 1)) ? mempool_alloc_pages (mm/mempool.c:640) bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8)) ? mempool_alloc_pages (mm/mempool.c:640) do_one_initcall (init/main.c:1283) Christoph found out this is due to the poisoning code not dealing properly with CONFIG_HIGHMEM because only the first page is mapped but then the whole potentially high-order page is accessed. We could give up on HIGHMEM here, but it's straightforward to fix this with a loop that's mapping, poisoning or checking and unmapping individual pages.
CVE-2025-68308 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: kvaser_usb: leaf: Fix potential infinite loop in command parsers The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback` functions contain logic to zero-length commands. These commands are used to align data to the USB endpoint's wMaxPacketSize boundary. The driver attempts to skip these placeholders by aligning the buffer position `pos` to the next packet boundary using `round_up()` function. However, if zero-length command is found exactly on a packet boundary (i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up` function will return the unchanged value of `pos`. This prevents `pos` to be increased, causing an infinite loop in the parsing logic. This patch fixes this in the function by using `pos + 1` instead. This ensures that even if `pos` is on a boundary, the calculation is based on `pos + 1`, forcing `round_up()` to always return the next aligned boundary.
CVE-2025-68311 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: tty: serial: ip22zilog: Use platform device for probing After commit 84a9582fd203 ("serial: core: Start managing serial controllers to enable runtime PM") serial drivers need to provide a device in struct uart_port.dev otherwise an oops happens. To fix this issue for ip22zilog driver switch driver to a platform driver and setup the serial device in sgi-ip22 code.
CVE-2025-68317 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/zctx: check chained notif contexts Send zc only links ubuf_info for requests coming from the same context. There are some ambiguous syz reports, so let's check the assumption on notification completion.
CVE-2025-68318 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: clk: thead: th1520-ap: set all AXI clocks to CLK_IS_CRITICAL The AXI crossbar of TH1520 has no proper timeout handling, which means gating AXI clocks can easily lead to bus timeout and thus system hang. Set all AXI clock gates to CLK_IS_CRITICAL. All these clock gates are ungated by default on system reset. In addition, convert all current CLK_IGNORE_UNUSED usage to CLK_IS_CRITICAL to prevent unwanted clock gating.
CVE-2025-68320 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: lan966x: Fix sleeping in atomic context The following warning was seen when we try to connect using ssh to the device. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:575 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 104, name: dropbear preempt_count: 1, expected: 0 INFO: lockdep is turned off. CPU: 0 UID: 0 PID: 104 Comm: dropbear Tainted: G W 6.18.0-rc2-00399-g6f1ab1b109b9-dirty #530 NONE Tainted: [W]=WARN Hardware name: Generic DT based system Call trace: unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x7c/0xac dump_stack_lvl from __might_resched+0x16c/0x2b0 __might_resched from __mutex_lock+0x64/0xd34 __mutex_lock from mutex_lock_nested+0x1c/0x24 mutex_lock_nested from lan966x_stats_get+0x5c/0x558 lan966x_stats_get from dev_get_stats+0x40/0x43c dev_get_stats from dev_seq_printf_stats+0x3c/0x184 dev_seq_printf_stats from dev_seq_show+0x10/0x30 dev_seq_show from seq_read_iter+0x350/0x4ec seq_read_iter from seq_read+0xfc/0x194 seq_read from proc_reg_read+0xac/0x100 proc_reg_read from vfs_read+0xb0/0x2b0 vfs_read from ksys_read+0x6c/0xec ksys_read from ret_fast_syscall+0x0/0x1c Exception stack(0xf0b11fa8 to 0xf0b11ff0) 1fa0: 00000001 00001000 00000008 be9048d8 00001000 00000001 1fc0: 00000001 00001000 00000008 00000003 be905920 0000001e 00000000 00000001 1fe0: 0005404c be9048c0 00018684 b6ec2cd8 It seems that we are using a mutex in a atomic context which is wrong. Change the mutex with a spinlock.
CVE-2025-68215 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix PTP cleanup on driver removal in error path Improve the cleanup on releasing PTP resources in error path. The error case might happen either at the driver probe and PTP feature initialization or on PTP restart (errors in reset handling, NVM update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf function) and 'ps_lock' mutex deinitialization were missed. Additionally, ptp clock was not unregistered in the latter case. Keep PTP state as 'uninitialized' on init to distinguish between error scenarios and to avoid resource release duplication at driver removal. The consequence of missing ice_ptp_cleanup_pf call is the following call trace dumped when ice_adapter object is freed (port list is not empty, as it is required at this stage): [ T93022] ------------[ cut here ]------------ [ T93022] WARNING: CPU: 10 PID: 93022 at ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice] ... [ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice] ... [ T93022] Call Trace: [ T93022] <TASK> [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] ? __warn.cold+0xb0/0x10e [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] ? report_bug+0xd8/0x150 [ T93022] ? handle_bug+0xe9/0x110 [ T93022] ? exc_invalid_op+0x17/0x70 [ T93022] ? asm_exc_invalid_op+0x1a/0x20 [ T93022] ? ice_adapter_put+0xef/0x100 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] [ T93022] pci_device_remove+0x42/0xb0 [ T93022] device_release_driver_internal+0x19f/0x200 [ T93022] driver_detach+0x48/0x90 [ T93022] bus_remove_driver+0x70/0xf0 [ T93022] pci_unregister_driver+0x42/0xb0 [ T93022] ice_module_exit+0x10/0xdb0 [ice 33d2647ad4f6d866d41eefff1806df37c68aef0c] ... [ T93022] ---[ end trace 0000000000000000 ]--- [ T93022] ice: module unloaded
CVE-2025-68216 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: BPF: Disable trampoline for kernel module function trace The current LoongArch BPF trampoline implementation is incompatible with tracing functions in kernel modules. This causes several severe and user-visible problems: * The `bpf_selftests/module_attach` test fails consistently. * Kernel lockup when a BPF program is attached to a module function [1]. * Critical kernel modules like WireGuard experience traffic disruption when their functions are traced with fentry [2]. Given the severity and the potential for other unknown side-effects, it is safest to disable the feature entirely for now. This patch prevents the BPF subsystem from allowing trampoline attachments to kernel module functions on LoongArch. This is a temporary mitigation until the core issues in the trampoline code for kernel module handling can be identified and fixed. [root@fedora bpf]# ./test_progs -a module_attach -v bpf_testmod.ko is already unloaded. Loading bpf_testmod.ko... Successfully loaded bpf_testmod.ko. test_module_attach:PASS:skel_open 0 nsec test_module_attach:PASS:set_attach_target 0 nsec test_module_attach:PASS:set_attach_target_explicit 0 nsec test_module_attach:PASS:skel_load 0 nsec libbpf: prog 'handle_fentry': failed to attach: -ENOTSUPP libbpf: prog 'handle_fentry': failed to auto-attach: -ENOTSUPP test_module_attach:FAIL:skel_attach skeleton attach failed: -524 Summary: 0/0 PASSED, 0 SKIPPED, 1 FAILED Successfully unloaded bpf_testmod.ko. [1]: https://lore.kernel.org/loongarch/CAK3+h2wDmpC-hP4u4pJY8T-yfKyk4yRzpu2LMO+C13FMT58oqQ@mail.gmail.com/ [2]: https://lore.kernel.org/loongarch/CAK3+h2wYcpc+OwdLDUBvg2rF9rvvyc5amfHT-KcFaK93uoELPg@mail.gmail.com/
CVE-2025-68217 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: pegasus-notetaker - fix potential out-of-bounds access In the pegasus_notetaker driver, the pegasus_probe() function allocates the URB transfer buffer using the wMaxPacketSize value from the endpoint descriptor. An attacker can use a malicious USB descriptor to force the allocation of a very small buffer. Subsequently, if the device sends an interrupt packet with a specific pattern (e.g., where the first byte is 0x80 or 0x42), the pegasus_parse_packet() function parses the packet without checking the allocated buffer size. This leads to an out-of-bounds memory access.
CVE-2025-68218 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvme-multipath: fix lockdep WARN due to partition scan work Blktests test cases nvme/014, 057 and 058 fail occasionally due to a lockdep WARN. As reported in the Closes tag URL, the WARN indicates that a deadlock can happen due to the dependency among disk->open_mutex, kblockd workqueue completion and partition_scan_work completion. To avoid the lockdep WARN and the potential deadlock, cut the dependency by running the partition_scan_work not by kblockd workqueue but by nvme_wq.
CVE-2025-68219 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix memory leak in smb3_fs_context_parse_param error path Add proper cleanup of ctx->source and fc->source to the cifs_parse_mount_err error handler. This ensures that memory allocated for the source strings is correctly freed on all error paths, matching the cleanup already performed in the success path by smb3_cleanup_fs_context_contents(). Pointers are also set to NULL after freeing to prevent potential double-free issues. This change fixes a memory leak originally detected by syzbot. The leak occurred when processing Opt_source mount options if an error happened after ctx->source and fc->source were successfully allocated but before the function completed. The specific leak sequence was: 1. ctx->source = smb3_fs_context_fullpath(ctx, '/') allocates memory 2. fc->source = kstrdup(ctx->source, GFP_KERNEL) allocates more memory 3. A subsequent error jumps to cifs_parse_mount_err 4. The old error handler freed passwords but not the source strings, causing the memory to leak. This issue was not addressed by commit e8c73eb7db0a ("cifs: client: fix memory leak in smb3_fs_context_parse_param"), which only fixed leaks from repeated fsconfig() calls but not this error path. Patch updated with minor change suggested by kernel test robot
CVE-2025-68223 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: delete radeon_fence_process in is_signaled, no deadlock Delete the attempt to progress the queue when checking if fence is signaled. This avoids deadlock. dma-fence_ops::signaled can be called with the fence lock in unknown state. For radeon, the fence lock is also the wait queue lock. This can cause a self deadlock when signaled() tries to make forward progress on the wait queue. But advancing the queue is unneeded because incorrectly returning false from signaled() is perfectly acceptable. (cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db)
CVE-2025-68224 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix a regression triggered by scsi_host_busy() Commit 995412e23bb2 ("blk-mq: Replace tags->lock with SRCU for tag iterators") introduced the following regression: Call trace: __srcu_read_lock+0x30/0x80 (P) blk_mq_tagset_busy_iter+0x44/0x300 scsi_host_busy+0x38/0x70 ufshcd_print_host_state+0x34/0x1bc ufshcd_link_startup.constprop.0+0xe4/0x2e0 ufshcd_init+0x944/0xf80 ufshcd_pltfrm_init+0x504/0x820 ufs_rockchip_probe+0x2c/0x88 platform_probe+0x5c/0xa4 really_probe+0xc0/0x38c __driver_probe_device+0x7c/0x150 driver_probe_device+0x40/0x120 __driver_attach+0xc8/0x1e0 bus_for_each_dev+0x7c/0xdc driver_attach+0x24/0x30 bus_add_driver+0x110/0x230 driver_register+0x68/0x130 __platform_driver_register+0x20/0x2c ufs_rockchip_pltform_init+0x1c/0x28 do_one_initcall+0x60/0x1e0 kernel_init_freeable+0x248/0x2c4 kernel_init+0x20/0x140 ret_from_fork+0x10/0x20 Fix this regression by making scsi_host_busy() check whether the SCSI host tag set has already been initialized. tag_set->ops is set by scsi_mq_setup_tags() just before blk_mq_alloc_tag_set() is called. This fix is based on the assumption that scsi_host_busy() and scsi_mq_setup_tags() calls are serialized. This is the case in the UFS driver.
CVE-2025-68228 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/plane: Fix create_in_format_blob() return value create_in_format_blob() is either supposed to return a valid pointer or an error, but never NULL. The caller will dereference the blob when it is not an error, and thus will oops if NULL returned. Return proper error values in the failure cases.
CVE-2025-68229 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: tcm_loop: Fix segfault in tcm_loop_tpg_address_show() If the allocation of tl_hba->sh fails in tcm_loop_driver_probe() and we attempt to dereference it in tcm_loop_tpg_address_show() we will get a segfault, see below for an example. So, check tl_hba->sh before dereferencing it. Unable to allocate struct scsi_host BUG: kernel NULL pointer dereference, address: 0000000000000194 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 8356 Comm: tokio-runtime-w Not tainted 6.6.104.2-4.azl3 #1 Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 09/28/2024 RIP: 0010:tcm_loop_tpg_address_show+0x2e/0x50 [tcm_loop] ... Call Trace: <TASK> configfs_read_iter+0x12d/0x1d0 [configfs] vfs_read+0x1b5/0x300 ksys_read+0x6f/0xf0 ...
CVE-2025-68230 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix gpu page fault after hibernation on PF passthrough On PF passthrough environment, after hibernate and then resume, coralgemm will cause gpu page fault. Mode1 reset happens during hibernate, but partition mode is not restored on resume, register mmCP_HYP_XCP_CTL and mmCP_PSP_XCP_CTL is not right after resume. When CP access the MQD BO, wrong stride size is used, this will cause out of bound access on the MQD BO, resulting page fault. The fix is to ensure gfx_v9_4_3_switch_compute_partition() is called when resume from a hibernation. KFD resume is called separately during a reset recovery or resume from suspend sequence. Hence it's not required to be called as part of partition switch. (cherry picked from commit 5d1b32cfe4a676fe552416cb5ae847b215463a1a)
CVE-2025-68233 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/tegra: Add call to put_pid() Add a call to put_pid() corresponding to get_task_pid(). host1x_memory_context_alloc() does not take ownership of the PID so we need to free it here to avoid leaking. [mperttunen@nvidia.com: reword commit message]
CVE-2025-68240 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: nilfs2: avoid having an active sc_timer before freeing sci Because kthread_stop did not stop sc_task properly and returned -EINTR, the sc_timer was not properly closed, ultimately causing the problem [1] reported by syzbot when freeing sci due to the sc_timer not being closed. Because the thread sc_task main function nilfs_segctor_thread() returns 0 when it succeeds, when the return value of kthread_stop() is not 0 in nilfs_segctor_destroy(), we believe that it has not properly closed sc_timer. We use timer_shutdown_sync() to sync wait for sc_timer to shutdown, and set the value of sc_task to NULL under the protection of lock sc_state_lock, so as to avoid the issue caused by sc_timer not being properly shutdowned. [1] ODEBUG: free active (active state 0) object: 00000000dacb411a object type: timer_list hint: nilfs_construction_timeout Call trace: nilfs_segctor_destroy fs/nilfs2/segment.c:2811 [inline] nilfs_detach_log_writer+0x668/0x8cc fs/nilfs2/segment.c:2877 nilfs_put_super+0x4c/0x12c fs/nilfs2/super.c:509