Search Results (326423 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-52619 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pstore/ram: Fix crash when setting number of cpus to an odd number When the number of cpu cores is adjusted to 7 or other odd numbers, the zone size will become an odd number. The address of the zone will become: addr of zone0 = BASE addr of zone1 = BASE + zone_size addr of zone2 = BASE + zone_size*2 ... The address of zone1/3/5/7 will be mapped to non-alignment va. Eventually crashes will occur when accessing these va. So, use ALIGN_DOWN() to make sure the zone size is even to avoid this bug.
CVE-2023-52617 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: switchtec: Fix stdev_release() crash after surprise hot remove A PCI device hot removal may occur while stdev->cdev is held open. The call to stdev_release() then happens during close or exit, at a point way past switchtec_pci_remove(). Otherwise the last ref would vanish with the trailing put_device(), just before return. At that later point in time, the devm cleanup has already removed the stdev->mmio_mrpc mapping. Also, the stdev->pdev reference was not a counted one. Therefore, in DMA mode, the iowrite32() in stdev_release() will cause a fatal page fault, and the subsequent dma_free_coherent(), if reached, would pass a stale &stdev->pdev->dev pointer. Fix by moving MRPC DMA shutdown into switchtec_pci_remove(), after stdev_kill(). Counting the stdev->pdev ref is now optional, but may prevent future accidents. Reproducible via the script at https://lore.kernel.org/r/20231113212150.96410-1-dns@arista.com
CVE-2023-52606 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/lib: Validate size for vector operations Some of the fp/vmx code in sstep.c assume a certain maximum size for the instructions being emulated. The size of those operations however is determined separately in analyse_instr(). Add a check to validate the assumption on the maximum size of the operations, so as to prevent any unintended kernel stack corruption.
CVE-2023-52604 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: FS:JFS:UBSAN:array-index-out-of-bounds in dbAdjTree Syzkaller reported the following issue: UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:2867:6 index 196694 is out of range for type 's8[1365]' (aka 'signed char[1365]') CPU: 1 PID: 109 Comm: jfsCommit Not tainted 6.6.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:217 [inline] __ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348 dbAdjTree+0x474/0x4f0 fs/jfs/jfs_dmap.c:2867 dbJoin+0x210/0x2d0 fs/jfs/jfs_dmap.c:2834 dbFreeBits+0x4eb/0xda0 fs/jfs/jfs_dmap.c:2331 dbFreeDmap fs/jfs/jfs_dmap.c:2080 [inline] dbFree+0x343/0x650 fs/jfs/jfs_dmap.c:402 txFreeMap+0x798/0xd50 fs/jfs/jfs_txnmgr.c:2534 txUpdateMap+0x342/0x9e0 txLazyCommit fs/jfs/jfs_txnmgr.c:2664 [inline] jfs_lazycommit+0x47a/0xb70 fs/jfs/jfs_txnmgr.c:2732 kthread+0x2d3/0x370 kernel/kthread.c:388 ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 </TASK> ================================================================================ Kernel panic - not syncing: UBSAN: panic_on_warn set ... CPU: 1 PID: 109 Comm: jfsCommit Not tainted 6.6.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 panic+0x30f/0x770 kernel/panic.c:340 check_panic_on_warn+0x82/0xa0 kernel/panic.c:236 ubsan_epilogue lib/ubsan.c:223 [inline] __ubsan_handle_out_of_bounds+0x13c/0x150 lib/ubsan.c:348 dbAdjTree+0x474/0x4f0 fs/jfs/jfs_dmap.c:2867 dbJoin+0x210/0x2d0 fs/jfs/jfs_dmap.c:2834 dbFreeBits+0x4eb/0xda0 fs/jfs/jfs_dmap.c:2331 dbFreeDmap fs/jfs/jfs_dmap.c:2080 [inline] dbFree+0x343/0x650 fs/jfs/jfs_dmap.c:402 txFreeMap+0x798/0xd50 fs/jfs/jfs_txnmgr.c:2534 txUpdateMap+0x342/0x9e0 txLazyCommit fs/jfs/jfs_txnmgr.c:2664 [inline] jfs_lazycommit+0x47a/0xb70 fs/jfs/jfs_txnmgr.c:2732 kthread+0x2d3/0x370 kernel/kthread.c:388 ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304 </TASK> Kernel Offset: disabled Rebooting in 86400 seconds.. The issue is caused when the value of lp becomes greater than CTLTREESIZE which is the max size of stree. Adding a simple check solves this issue. Dave: As the function returns a void, good error handling would require a more intrusive code reorganization, so I modified Osama's patch at use WARN_ON_ONCE for lack of a cleaner option. The patch is tested via syzbot.
CVE-2023-52603 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: UBSAN: array-index-out-of-bounds in dtSplitRoot Syzkaller reported the following issue: oop0: detected capacity change from 0 to 32768 UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dtree.c:1971:9 index -2 is out of range for type 'struct dtslot [128]' CPU: 0 PID: 3613 Comm: syz-executor270 Not tainted 6.0.0-syzkaller-09423-g493ffd6605b2 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:151 [inline] __ubsan_handle_out_of_bounds+0xdb/0x130 lib/ubsan.c:283 dtSplitRoot+0x8d8/0x1900 fs/jfs/jfs_dtree.c:1971 dtSplitUp fs/jfs/jfs_dtree.c:985 [inline] dtInsert+0x1189/0x6b80 fs/jfs/jfs_dtree.c:863 jfs_mkdir+0x757/0xb00 fs/jfs/namei.c:270 vfs_mkdir+0x3b3/0x590 fs/namei.c:4013 do_mkdirat+0x279/0x550 fs/namei.c:4038 __do_sys_mkdirat fs/namei.c:4053 [inline] __se_sys_mkdirat fs/namei.c:4051 [inline] __x64_sys_mkdirat+0x85/0x90 fs/namei.c:4051 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fcdc0113fd9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffeb8bc67d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000102 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fcdc0113fd9 RDX: 0000000000000000 RSI: 0000000020000340 RDI: 0000000000000003 RBP: 00007fcdc00d37a0 R08: 0000000000000000 R09: 00007fcdc00d37a0 R10: 00005555559a72c0 R11: 0000000000000246 R12: 00000000f8008000 R13: 0000000000000000 R14: 00083878000000f8 R15: 0000000000000000 </TASK> The issue is caused when the value of fsi becomes less than -1. The check to break the loop when fsi value becomes -1 is present but syzbot was able to produce value less than -1 which cause the error. This patch simply add the change for the values less than 0. The patch is tested via syzbot.
CVE-2023-52602 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix slab-out-of-bounds Read in dtSearch Currently while searching for current page in the sorted entry table of the page there is a out of bound access. Added a bound check to fix the error. Dave: Set return code to -EIO
CVE-2023-52601 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in dbAdjTree Currently there is a bound check missing in the dbAdjTree while accessing the dmt_stree. To add the required check added the bool is_ctl which is required to determine the size as suggest in the following commit. https://lore.kernel.org/linux-kernel-mentees/f9475918-2186-49b8-b801-6f0f9e75f4fa@oracle.com/
CVE-2023-52600 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix uaf in jfs_evict_inode When the execution of diMount(ipimap) fails, the object ipimap that has been released may be accessed in diFreeSpecial(). Asynchronous ipimap release occurs when rcu_core() calls jfs_free_node(). Therefore, when diMount(ipimap) fails, sbi->ipimap should not be initialized as ipimap.
CVE-2023-52599 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in diNewExt [Syz report] UBSAN: array-index-out-of-bounds in fs/jfs/jfs_imap.c:2360:2 index -878706688 is out of range for type 'struct iagctl[128]' CPU: 1 PID: 5065 Comm: syz-executor282 Not tainted 6.7.0-rc4-syzkaller-00009-gbee0e7762ad2 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:217 [inline] __ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348 diNewExt+0x3cf3/0x4000 fs/jfs/jfs_imap.c:2360 diAllocExt fs/jfs/jfs_imap.c:1949 [inline] diAllocAG+0xbe8/0x1e50 fs/jfs/jfs_imap.c:1666 diAlloc+0x1d3/0x1760 fs/jfs/jfs_imap.c:1587 ialloc+0x8f/0x900 fs/jfs/jfs_inode.c:56 jfs_mkdir+0x1c5/0xb90 fs/jfs/namei.c:225 vfs_mkdir+0x2f1/0x4b0 fs/namei.c:4106 do_mkdirat+0x264/0x3a0 fs/namei.c:4129 __do_sys_mkdir fs/namei.c:4149 [inline] __se_sys_mkdir fs/namei.c:4147 [inline] __x64_sys_mkdir+0x6e/0x80 fs/namei.c:4147 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x45/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b RIP: 0033:0x7fcb7e6a0b57 Code: ff ff 77 07 31 c0 c3 0f 1f 40 00 48 c7 c2 b8 ff ff ff f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 b8 53 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffd83023038 EFLAGS: 00000286 ORIG_RAX: 0000000000000053 RAX: ffffffffffffffda RBX: 00000000ffffffff RCX: 00007fcb7e6a0b57 RDX: 00000000000a1020 RSI: 00000000000001ff RDI: 0000000020000140 RBP: 0000000020000140 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000286 R12: 00007ffd830230d0 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [Analysis] When the agstart is too large, it can cause agno overflow. [Fix] After obtaining agno, if the value is invalid, exit the subsequent process. Modified the test from agno > MAXAG to agno >= MAXAG based on linux-next report by kernel test robot (Dan Carpenter).
CVE-2023-52598 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: s390/ptrace: handle setting of fpc register correctly If the content of the floating point control (fpc) register of a traced process is modified with the ptrace interface the new value is tested for validity by temporarily loading it into the fpc register. This may lead to corruption of the fpc register of the tracing process: if an interrupt happens while the value is temporarily loaded into the fpc register, and within interrupt context floating point or vector registers are used, the current fp/vx registers are saved with save_fpu_regs() assuming they belong to user space and will be loaded into fp/vx registers when returning to user space. test_fp_ctl() restores the original user space fpc register value, however it will be discarded, when returning to user space. In result the tracer will incorrectly continue to run with the value that was supposed to be used for the traced process. Fix this by saving fpu register contents with save_fpu_regs() before using test_fp_ctl().
CVE-2023-52596 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix out of bounds access for empty sysctl registers When registering tables to the sysctl subsystem there is a check to see if header is a permanently empty directory (used for mounts). This check evaluates the first element of the ctl_table. This results in an out of bounds evaluation when registering empty directories. The function register_sysctl_mount_point now passes a ctl_table of size 1 instead of size 0. It now relies solely on the type to identify a permanently empty register. Make sure that the ctl_table has at least one element before testing for permanent emptiness.
CVE-2023-52595 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: restart beacon queue when hardware reset When a hardware reset is triggered, all registers are reset, so all queues are forced to stop in hardware interface. However, mac80211 will not automatically stop the queue. If we don't manually stop the beacon queue, the queue will be deadlocked and unable to start again. This patch fixes the issue where Apple devices cannot connect to the AP after calling ieee80211_restart_hw().
CVE-2023-52591 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: reiserfs: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change reiserfs rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
CVE-2023-52590 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change ocfs2 rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
CVE-2023-52587 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: IB/ipoib: Fix mcast list locking Releasing the `priv->lock` while iterating the `priv->multicast_list` in `ipoib_mcast_join_task()` opens a window for `ipoib_mcast_dev_flush()` to remove the items while in the middle of iteration. If the mcast is removed while the lock was dropped, the for loop spins forever resulting in a hard lockup (as was reported on RHEL 4.18.0-372.75.1.el8_6 kernel): Task A (kworker/u72:2 below) | Task B (kworker/u72:0 below) -----------------------------------+----------------------------------- ipoib_mcast_join_task(work) | ipoib_ib_dev_flush_light(work) spin_lock_irq(&priv->lock) | __ipoib_ib_dev_flush(priv, ...) list_for_each_entry(mcast, | ipoib_mcast_dev_flush(dev = priv->dev) &priv->multicast_list, list) | ipoib_mcast_join(dev, mcast) | spin_unlock_irq(&priv->lock) | | spin_lock_irqsave(&priv->lock, flags) | list_for_each_entry_safe(mcast, tmcast, | &priv->multicast_list, list) | list_del(&mcast->list); | list_add_tail(&mcast->list, &remove_list) | spin_unlock_irqrestore(&priv->lock, flags) spin_lock_irq(&priv->lock) | | ipoib_mcast_remove_list(&remove_list) (Here, `mcast` is no longer on the | list_for_each_entry_safe(mcast, tmcast, `priv->multicast_list` and we keep | remove_list, list) spinning on the `remove_list` of | >>> wait_for_completion(&mcast->done) the other thread which is blocked | and the list is still valid on | it's stack.) Fix this by keeping the lock held and changing to GFP_ATOMIC to prevent eventual sleeps. Unfortunately we could not reproduce the lockup and confirm this fix but based on the code review I think this fix should address such lockups. crash> bc 31 PID: 747 TASK: ff1c6a1a007e8000 CPU: 31 COMMAND: "kworker/u72:2" -- [exception RIP: ipoib_mcast_join_task+0x1b1] RIP: ffffffffc0944ac1 RSP: ff646f199a8c7e00 RFLAGS: 00000002 RAX: 0000000000000000 RBX: ff1c6a1a04dc82f8 RCX: 0000000000000000 work (&priv->mcast_task{,.work}) RDX: ff1c6a192d60ac68 RSI: 0000000000000286 RDI: ff1c6a1a04dc8000 &mcast->list RBP: ff646f199a8c7e90 R8: ff1c699980019420 R9: ff1c6a1920c9a000 R10: ff646f199a8c7e00 R11: ff1c6a191a7d9800 R12: ff1c6a192d60ac00 mcast R13: ff1c6a1d82200000 R14: ff1c6a1a04dc8000 R15: ff1c6a1a04dc82d8 dev priv (&priv->lock) &priv->multicast_list (aka head) ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 --- <NMI exception stack> --- #5 [ff646f199a8c7e00] ipoib_mcast_join_task+0x1b1 at ffffffffc0944ac1 [ib_ipoib] #6 [ff646f199a8c7e98] process_one_work+0x1a7 at ffffffff9bf10967 crash> rx ff646f199a8c7e68 ff646f199a8c7e68: ff1c6a1a04dc82f8 <<< work = &priv->mcast_task.work crash> list -hO ipoib_dev_priv.multicast_list ff1c6a1a04dc8000 (empty) crash> ipoib_dev_priv.mcast_task.work.func,mcast_mutex.owner.counter ff1c6a1a04dc8000 mcast_task.work.func = 0xffffffffc0944910 <ipoib_mcast_join_task>, mcast_mutex.owner.counter = 0xff1c69998efec000 crash> b 8 PID: 8 TASK: ff1c69998efec000 CPU: 33 COMMAND: "kworker/u72:0" -- #3 [ff646f1980153d50] wait_for_completion+0x96 at ffffffff9c7d7646 #4 [ff646f1980153d90] ipoib_mcast_remove_list+0x56 at ffffffffc0944dc6 [ib_ipoib] #5 [ff646f1980153de8] ipoib_mcast_dev_flush+0x1a7 at ffffffffc09455a7 [ib_ipoib] #6 [ff646f1980153e58] __ipoib_ib_dev_flush+0x1a4 at ffffffffc09431a4 [ib_ipoib] #7 [ff ---truncated---
CVE-2023-52517 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: spi: sun6i: fix race between DMA RX transfer completion and RX FIFO drain Previously the transfer complete IRQ immediately drained to RX FIFO to read any data remaining in FIFO to the RX buffer. This behaviour is correct when dealing with SPI in interrupt mode. However in DMA mode the transfer complete interrupt still fires as soon as all bytes to be transferred have been stored in the FIFO. At that point data in the FIFO still needs to be picked up by the DMA engine. Thus the drain procedure and DMA engine end up racing to read from RX FIFO, corrupting any data read. Additionally the RX buffer pointer is never adjusted according to DMA progress in DMA mode, thus calling the RX FIFO drain procedure in DMA mode is a bug. Fix corruptions in DMA RX mode by draining RX FIFO only in interrupt mode. Also wait for completion of RX DMA when in DMA mode before returning to ensure all data has been copied to the supplied memory buffer.
CVE-2023-52516 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dma-debug: don't call __dma_entry_alloc_check_leak() under free_entries_lock __dma_entry_alloc_check_leak() calls into printk -> serial console output (qcom geni) and grabs port->lock under free_entries_lock spin lock, which is a reverse locking dependency chain as qcom_geni IRQ handler can call into dma-debug code and grab free_entries_lock under port->lock. Move __dma_entry_alloc_check_leak() call out of free_entries_lock scope so that we don't acquire serial console's port->lock under it. Trimmed-down lockdep splat: The existing dependency chain (in reverse order) is: -> #2 (free_entries_lock){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 dma_entry_alloc+0x38/0x110 debug_dma_map_page+0x60/0xf8 dma_map_page_attrs+0x1e0/0x230 dma_map_single_attrs.constprop.0+0x6c/0xc8 geni_se_rx_dma_prep+0x40/0xcc qcom_geni_serial_isr+0x310/0x510 __handle_irq_event_percpu+0x110/0x244 handle_irq_event_percpu+0x20/0x54 handle_irq_event+0x50/0x88 handle_fasteoi_irq+0xa4/0xcc handle_irq_desc+0x28/0x40 generic_handle_domain_irq+0x24/0x30 gic_handle_irq+0xc4/0x148 do_interrupt_handler+0xa4/0xb0 el1_interrupt+0x34/0x64 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x64/0x68 arch_local_irq_enable+0x4/0x8 ____do_softirq+0x18/0x24 ... -> #1 (&port_lock_key){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 qcom_geni_serial_console_write+0x184/0x1dc console_flush_all+0x344/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 register_console+0x230/0x38c uart_add_one_port+0x338/0x494 qcom_geni_serial_probe+0x390/0x424 platform_probe+0x70/0xc0 really_probe+0x148/0x280 __driver_probe_device+0xfc/0x114 driver_probe_device+0x44/0x100 __device_attach_driver+0x64/0xdc bus_for_each_drv+0xb0/0xd8 __device_attach+0xe4/0x140 device_initial_probe+0x1c/0x28 bus_probe_device+0x44/0xb0 device_add+0x538/0x668 of_device_add+0x44/0x50 of_platform_device_create_pdata+0x94/0xc8 of_platform_bus_create+0x270/0x304 of_platform_populate+0xac/0xc4 devm_of_platform_populate+0x60/0xac geni_se_probe+0x154/0x160 platform_probe+0x70/0xc0 ... -> #0 (console_owner){-...}-{0:0}: __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 dma_entry_alloc+0xb4/0x110 debug_dma_map_sg+0xdc/0x2f8 __dma_map_sg_attrs+0xac/0xe4 dma_map_sgtable+0x30/0x4c get_pages+0x1d4/0x1e4 [msm] msm_gem_pin_pages_locked+0x38/0xac [msm] msm_gem_pin_vma_locked+0x58/0x88 [msm] msm_ioctl_gem_submit+0xde4/0x13ac [msm] drm_ioctl_kernel+0xe0/0x15c drm_ioctl+0x2e8/0x3f4 vfs_ioctl+0x30/0x50 ... Chain exists of: console_owner --> &port_lock_key --> free_entries_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(free_entries_lock); lock(&port_lock_key); lock(free_entries_lock); lock(console_owner); *** DEADLOCK *** Call trace: dump_backtrace+0xb4/0xf0 show_stack+0x20/0x30 dump_stack_lvl+0x60/0x84 dump_stack+0x18/0x24 print_circular_bug+0x1cc/0x234 check_noncircular+0x78/0xac __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 consol ---truncated---
CVE-2023-52511 1 Linux 1 Linux Kernel 2026-01-05 5.3 Medium
In the Linux kernel, the following vulnerability has been resolved: spi: sun6i: reduce DMA RX transfer width to single byte Through empirical testing it has been determined that sometimes RX SPI transfers with DMA enabled return corrupted data. This is down to single or even multiple bytes lost during DMA transfer from SPI peripheral to memory. It seems the RX FIFO within the SPI peripheral can become confused when performing bus read accesses wider than a single byte to it during an active SPI transfer. This patch reduces the width of individual DMA read accesses to the RX FIFO to a single byte to mitigate that issue.
CVE-2023-52500 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: pm80xx: Avoid leaking tags when processing OPC_INB_SET_CONTROLLER_CONFIG command Tags allocated for OPC_INB_SET_CONTROLLER_CONFIG command need to be freed when we receive the response.
CVE-2023-52498 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PM: sleep: Fix possible deadlocks in core system-wide PM code It is reported that in low-memory situations the system-wide resume core code deadlocks, because async_schedule_dev() executes its argument function synchronously if it cannot allocate memory (and not only in that case) and that function attempts to acquire a mutex that is already held. Executing the argument function synchronously from within dpm_async_fn() may also be problematic for ordering reasons (it may cause a consumer device's resume callback to be invoked before a requisite supplier device's one, for example). Address this by changing the code in question to use async_schedule_dev_nocall() for scheduling the asynchronous execution of device suspend and resume functions and to directly run them synchronously if async_schedule_dev_nocall() returns false.