| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: nxp: imx8-isi: Fix streaming cleanup on release
The current implementation unconditionally calls
mxc_isi_video_cleanup_streaming() in mxc_isi_video_release(). This can
lead to situations where any release call (like from a simple
"v4l2-ctl -l") may release a currently streaming queue when called on
such a device.
This is reproducible on an i.MX8MP board by streaming from an ISI
capture device using gstreamer:
gst-launch-1.0 -v v4l2src device=/dev/videoX ! \
video/x-raw,format=GRAY8,width=1280,height=800,framerate=1/120 ! \
fakesink
While this stream is running, querying the caps of the same device
provokes the error state:
v4l2-ctl -l -d /dev/videoX
This results in the following trace:
[ 155.452152] ------------[ cut here ]------------
[ 155.452163] WARNING: CPU: 0 PID: 1708 at drivers/media/platform/nxp/imx8-isi/imx8-isi-pipe.c:713 mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi]
[ 157.004248] Modules linked in: cfg80211 rpmsg_ctrl rpmsg_char rpmsg_tty virtio_rpmsg_bus rpmsg_ns rpmsg_core rfkill nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables mcp251x6
[ 157.053499] CPU: 0 UID: 0 PID: 1708 Comm: python3 Not tainted 6.15.4-00114-g1f61ca5cad76 #1 PREEMPT
[ 157.064369] Hardware name: imx8mp_board_01 (DT)
[ 157.068205] pstate: 400000c5 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 157.075169] pc : mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi]
[ 157.081195] lr : mxc_isi_pipe_irq_handler+0x38/0x1b0 [imx8_isi]
[ 157.087126] sp : ffff800080003ee0
[ 157.090438] x29: ffff800080003ee0 x28: ffff0000c3688000 x27: 0000000000000000
[ 157.097580] x26: 0000000000000000 x25: ffff0000c1e7ac00 x24: ffff800081b5ad50
[ 157.104723] x23: 00000000000000d1 x22: 0000000000000000 x21: ffff0000c25e4000
[ 157.111866] x20: 0000000060000200 x19: ffff80007a0608d0 x18: 0000000000000000
[ 157.119008] x17: ffff80006a4e3000 x16: ffff800080000000 x15: 0000000000000000
[ 157.126146] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
[ 157.133287] x11: 0000000000000040 x10: ffff0000c01445f0 x9 : ffff80007a053a38
[ 157.140425] x8 : ffff0000c04004b8 x7 : 0000000000000000 x6 : 0000000000000000
[ 157.147567] x5 : ffff0000c0400490 x4 : ffff80006a4e3000 x3 : ffff0000c25e4000
[ 157.154706] x2 : 0000000000000000 x1 : ffff8000825c0014 x0 : 0000000060000200
[ 157.161850] Call trace:
[ 157.164296] mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] (P)
[ 157.170319] __handle_irq_event_percpu+0x58/0x218
[ 157.175029] handle_irq_event+0x54/0xb8
[ 157.178867] handle_fasteoi_irq+0xac/0x248
[ 157.182968] handle_irq_desc+0x48/0x68
[ 157.186723] generic_handle_domain_irq+0x24/0x38
[ 157.191346] gic_handle_irq+0x54/0x120
[ 157.195098] call_on_irq_stack+0x24/0x30
[ 157.199027] do_interrupt_handler+0x88/0x98
[ 157.203212] el0_interrupt+0x44/0xc0
[ 157.206792] __el0_irq_handler_common+0x18/0x28
[ 157.211328] el0t_64_irq_handler+0x10/0x20
[ 157.215429] el0t_64_irq+0x198/0x1a0
[ 157.219009] ---[ end trace 0000000000000000 ]---
Address this issue by moving the streaming preparation and cleanup to
the vb2 .prepare_streaming() and .unprepare_streaming() operations. This
also simplifies the driver by allowing direct usage of the
vb2_ioctl_streamon() and vb2_ioctl_streamoff() helpers, and removal of
the manual cleanup from mxc_isi_video_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: cadence: Check for the existence of cdns_pcie::ops before using it
cdns_pcie::ops might not be populated by all the Cadence glue drivers. This
is going to be true for the upcoming Sophgo platform which doesn't set the
ops.
Hence, add a check to prevent NULL pointer dereference.
[mani: reworded subject and description] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Add devm release action to safely tear down CT
When a buffer object (BO) is allocated with the XE_BO_FLAG_GGTT_INVALIDATE
flag, the driver initiates TLB invalidation requests via the CTB mechanism
while releasing the BO. However a premature release of the CTB BO can lead
to system crashes, as observed in:
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:h2g_write+0x2f3/0x7c0 [xe]
Call Trace:
guc_ct_send_locked+0x8b/0x670 [xe]
xe_guc_ct_send_locked+0x19/0x60 [xe]
send_tlb_invalidation+0xb4/0x460 [xe]
xe_gt_tlb_invalidation_ggtt+0x15e/0x2e0 [xe]
ggtt_invalidate_gt_tlb.part.0+0x16/0x90 [xe]
ggtt_node_remove+0x110/0x140 [xe]
xe_ggtt_node_remove+0x40/0xa0 [xe]
xe_ggtt_remove_bo+0x87/0x250 [xe]
Introduce a devm-managed release action during xe_guc_ct_init() and
xe_guc_ct_init_post_hwconfig() to ensure proper CTB disablement before
resource deallocation, preventing the use-after-free scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
media: imon: make send_packet() more robust
syzbot is reporting that imon has three problems which result in
hung tasks due to forever holding device lock [1].
First problem is that when usb_rx_callback_intf0() once got -EPROTO error
after ictx->dev_present_intf0 became true, usb_rx_callback_intf0()
resubmits urb after printk(), and resubmitted urb causes
usb_rx_callback_intf0() to again get -EPROTO error. This results in
printk() flooding (RCU stalls).
Alan Stern commented [2] that
In theory it's okay to resubmit _if_ the driver has a robust
error-recovery scheme (such as giving up after some fixed limit on the
number of errors or after some fixed time has elapsed, perhaps with a
time delay to prevent a flood of errors). Most drivers don't bother to
do this; they simply give up right away. This makes them more
vulnerable to short-term noise interference during USB transfers, but in
reality such interference is quite rare. There's nothing really wrong
with giving up right away.
but imon has a poor error-recovery scheme which just retries forever;
this behavior should be fixed.
Since I'm not sure whether it is safe for imon users to give up upon any
error code, this patch takes care of only union of error codes chosen from
modules in drivers/media/rc/ directory which handle -EPROTO error (i.e.
ir_toy, mceusb and igorplugusb).
Second problem is that when usb_rx_callback_intf0() once got -EPROTO error
before ictx->dev_present_intf0 becomes true, usb_rx_callback_intf0() always
resubmits urb due to commit 8791d63af0cf ("[media] imon: don't wedge
hardware after early callbacks"). Move the ictx->dev_present_intf0 test
introduced by commit 6f6b90c9231a ("[media] imon: don't parse scancodes
until intf configured") to immediately before imon_incoming_packet(), or
the first problem explained above happens without printk() flooding (i.e.
hung task).
Third problem is that when usb_rx_callback_intf0() is not called for some
reason (e.g. flaky hardware; the reproducer for this problem sometimes
prevents usb_rx_callback_intf0() from being called),
wait_for_completion_interruptible() in send_packet() never returns (i.e.
hung task). As a workaround for such situation, change send_packet() to
wait for completion with timeout of 10 seconds. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix potential use after free in iwl_mld_remove_link()
This code frees "link" by calling kfree_rcu(link, rcu_head) and then it
dereferences "link" to get the "link->fw_id". Save the "link->fw_id"
first to avoid a potential use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mdio: Check regmap pointer returned by device_node_to_regmap()
The call to device_node_to_regmap() in airoha_mdio_probe() can return
an ERR_PTR() if regmap initialization fails. Currently, the driver
stores the pointer without validation, which could lead to a crash
if it is later dereferenced.
Add an IS_ERR() check and return the corresponding error code to make
the probe path more robust. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: use dst_dev_rcu() in tcp_fastopen_active_disable_ofo_check()
Use RCU to avoid a pair of atomic operations and a potential
UAF on dst_dev()->flags. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode
Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out
of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
codetag: debug: handle existing CODETAG_EMPTY in mark_objexts_empty for slabobj_ext
When alloc_slab_obj_exts() fails and then later succeeds in allocating a
slab extension vector, it calls handle_failed_objexts_alloc() to mark all
objects in the vector as empty. As a result all objects in this slab
(slabA) will have their extensions set to CODETAG_EMPTY.
Later on if this slabA is used to allocate a slabobj_ext vector for
another slab (slabB), we end up with the slabB->obj_exts pointing to a
slabobj_ext vector that itself has a non-NULL slabobj_ext equal to
CODETAG_EMPTY. When slabB gets freed, free_slab_obj_exts() is called to
free slabB->obj_exts vector.
free_slab_obj_exts() calls mark_objexts_empty(slabB->obj_exts) which will
generate a warning because it expects slabobj_ext vectors to have a NULL
obj_ext, not CODETAG_EMPTY.
Modify mark_objexts_empty() to skip the warning and setting the obj_ext
value if it's already set to CODETAG_EMPTY.
To quickly detect this WARN, I modified the code from
WARN_ON(slab_exts[offs].ref.ct) to BUG_ON(slab_exts[offs].ref.ct == 1);
We then obtained this message:
[21630.898561] ------------[ cut here ]------------
[21630.898596] kernel BUG at mm/slub.c:2050!
[21630.898611] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[21630.900372] Modules linked in: squashfs isofs vfio_iommu_type1
vhost_vsock vfio vhost_net vmw_vsock_virtio_transport_common vhost tap
vhost_iotlb iommufd vsock binfmt_misc nfsv3 nfs_acl nfs lockd grace
netfs tls rds dns_resolver tun brd overlay ntfs3 exfat btrfs
blake2b_generic xor xor_neon raid6_pq loop sctp ip6_udp_tunnel
udp_tunnel nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4
nf_tables rfkill ip_set sunrpc vfat fat joydev sg sch_fq_codel nfnetlink
virtio_gpu sr_mod cdrom drm_client_lib virtio_dma_buf drm_shmem_helper
drm_kms_helper drm ghash_ce backlight virtio_net virtio_blk virtio_scsi
net_failover virtio_console failover virtio_mmio dm_mirror
dm_region_hash dm_log dm_multipath dm_mod fuse i2c_dev virtio_pci
virtio_pci_legacy_dev virtio_pci_modern_dev virtio virtio_ring autofs4
aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject]
[21630.909177] CPU: 3 UID: 0 PID: 3787 Comm: kylin-process-m Kdump:
loaded Tainted: G W 6.18.0-rc1+ #74 PREEMPT(voluntary)
[21630.910495] Tainted: [W]=WARN
[21630.910867] Hardware name: QEMU KVM Virtual Machine, BIOS unknown
2/2/2022
[21630.911625] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS
BTYPE=--)
[21630.912392] pc : __free_slab+0x228/0x250
[21630.912868] lr : __free_slab+0x18c/0x250[21630.913334] sp :
ffff8000a02f73e0
[21630.913830] x29: ffff8000a02f73e0 x28: fffffdffc43fc800 x27:
ffff0000c0011c40
[21630.914677] x26: ffff0000c000cac0 x25: ffff00010fe5e5f0 x24:
ffff000102199b40
[21630.915469] x23: 0000000000000003 x22: 0000000000000003 x21:
ffff0000c0011c40
[21630.916259] x20: fffffdffc4086600 x19: fffffdffc43fc800 x18:
0000000000000000
[21630.917048] x17: 0000000000000000 x16: 0000000000000000 x15:
0000000000000000
[21630.917837] x14: 0000000000000000 x13: 0000000000000000 x12:
ffff70001405ee66
[21630.918640] x11: 1ffff0001405ee65 x10: ffff70001405ee65 x9 :
ffff800080a295dc
[21630.919442] x8 : ffff8000a02f7330 x7 : 0000000000000000 x6 :
0000000000003000
[21630.920232] x5 : 0000000024924925 x4 : 0000000000000001 x3 :
0000000000000007
[21630.921021] x2 : 0000000000001b40 x1 : 000000000000001f x0 :
0000000000000001
[21630.921810] Call trace:
[21630.922130] __free_slab+0x228/0x250 (P)
[21630.922669] free_slab+0x38/0x118
[21630.923079] free_to_partial_list+0x1d4/0x340
[21630.923591] __slab_free+0x24c/0x348
[21630.924024] ___cache_free+0xf0/0x110
[21630.924468] qlist_free_all+0x78/0x130
[21630.924922] kasan_quarantine_reduce+0x11
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Add bpf_prog_run_data_pointers()
syzbot found that cls_bpf_classify() is able to change
tc_skb_cb(skb)->drop_reason triggering a warning in sk_skb_reason_drop().
WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 __sk_skb_reason_drop net/core/skbuff.c:1189 [inline]
WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 sk_skb_reason_drop+0x76/0x170 net/core/skbuff.c:1214
struct tc_skb_cb has been added in commit ec624fe740b4 ("net/sched:
Extend qdisc control block with tc control block"), which added a wrong
interaction with db58ba459202 ("bpf: wire in data and data_end for
cls_act_bpf").
drop_reason was added later.
Add bpf_prog_run_data_pointers() helper to save/restore the net_sched
storage colliding with BPF data_meta/data_end. |
| In the Linux kernel, the following vulnerability has been resolved:
arch_topology: Fix incorrect error check in topology_parse_cpu_capacity()
Fix incorrect use of PTR_ERR_OR_ZERO() in topology_parse_cpu_capacity()
which causes the code to proceed with NULL clock pointers. The current
logic uses !PTR_ERR_OR_ZERO(cpu_clk) which evaluates to true for both
valid pointers and NULL, leading to potential NULL pointer dereference
in clk_get_rate().
Per include/linux/err.h documentation, PTR_ERR_OR_ZERO(ptr) returns:
"The error code within @ptr if it is an error pointer; 0 otherwise."
This means PTR_ERR_OR_ZERO() returns 0 for both valid pointers AND NULL
pointers. Therefore !PTR_ERR_OR_ZERO(cpu_clk) evaluates to true (proceed)
when cpu_clk is either valid or NULL, causing clk_get_rate(NULL) to be
called when of_clk_get() returns NULL.
Replace with !IS_ERR_OR_NULL(cpu_clk) which only proceeds for valid
pointers, preventing potential NULL pointer dereference in clk_get_rate(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: fix the deadlock of enetc_mdio_lock
After applying the workaround for err050089, the LS1028A platform
experiences RCU stalls on RT kernel. This issue is caused by the
recursive acquisition of the read lock enetc_mdio_lock. Here list some
of the call stacks identified under the enetc_poll path that may lead to
a deadlock:
enetc_poll
-> enetc_lock_mdio
-> enetc_clean_rx_ring OR napi_complete_done
-> napi_gro_receive
-> enetc_start_xmit
-> enetc_lock_mdio
-> enetc_map_tx_buffs
-> enetc_unlock_mdio
-> enetc_unlock_mdio
After enetc_poll acquires the read lock, a higher-priority writer attempts
to acquire the lock, causing preemption. The writer detects that a
read lock is already held and is scheduled out. However, readers under
enetc_poll cannot acquire the read lock again because a writer is already
waiting, leading to a thread hang.
Currently, the deadlock is avoided by adjusting enetc_lock_mdio to prevent
recursive lock acquisition. |
| In the Linux kernel, the following vulnerability has been resolved:
slab: Avoid race on slab->obj_exts in alloc_slab_obj_exts
If two competing threads enter alloc_slab_obj_exts() and one of them
fails to allocate the object extension vector, it might override the
valid slab->obj_exts allocated by the other thread with
OBJEXTS_ALLOC_FAIL. This will cause the thread that lost this race and
expects a valid pointer to dereference a NULL pointer later on.
Update slab->obj_exts atomically using cmpxchg() to avoid
slab->obj_exts overrides by racing threads.
Thanks for Vlastimil and Suren's help with debugging. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: RX, Fix generating skb from non-linear xdp_buff for striding RQ
XDP programs can change the layout of an xdp_buff through
bpf_xdp_adjust_tail() and bpf_xdp_adjust_head(). Therefore, the driver
cannot assume the size of the linear data area nor fragments. Fix the
bug in mlx5 by generating skb according to xdp_buff after XDP programs
run.
Currently, when handling multi-buf XDP, the mlx5 driver assumes the
layout of an xdp_buff to be unchanged. That is, the linear data area
continues to be empty and fragments remain the same. This may cause
the driver to generate erroneous skb or triggering a kernel
warning. When an XDP program added linear data through
bpf_xdp_adjust_head(), the linear data will be ignored as
mlx5e_build_linear_skb() builds an skb without linear data and then
pull data from fragments to fill the linear data area. When an XDP
program has shrunk the non-linear data through bpf_xdp_adjust_tail(),
the delta passed to __pskb_pull_tail() may exceed the actual nonlinear
data size and trigger the BUG_ON in it.
To fix the issue, first record the original number of fragments. If the
number of fragments changes after the XDP program runs, rewind the end
fragment pointer by the difference and recalculate the truesize. Then,
build the skb with the linear data area matching the xdp_buff. Finally,
only pull data in if there is non-linear data and fill the linear part
up to 256 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/mellanox: mlxbf-pmc: add sysfs_attr_init() to count_clock init
The lock-related debug logic (CONFIG_LOCK_STAT) in the kernel is noting
the following warning when the BlueField-3 SOC is booted:
BUG: key ffff00008a3402a8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 4 PID: 592 at kernel/locking/lockdep.c:4801 lockdep_init_map_type+0x1d4/0x2a0
<snip>
Call trace:
lockdep_init_map_type+0x1d4/0x2a0
__kernfs_create_file+0x84/0x140
sysfs_add_file_mode_ns+0xcc/0x1cc
internal_create_group+0x110/0x3d4
internal_create_groups.part.0+0x54/0xcc
sysfs_create_groups+0x24/0x40
device_add+0x6e8/0x93c
device_register+0x28/0x40
__hwmon_device_register+0x4b0/0x8a0
devm_hwmon_device_register_with_groups+0x7c/0xe0
mlxbf_pmc_probe+0x1e8/0x3e0 [mlxbf_pmc]
platform_probe+0x70/0x110
The mlxbf_pmc driver must call sysfs_attr_init() during the
initialization of the "count_clock" data structure to avoid
this warning. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Do not warn if the page is already tagged in copy_highpage()
The arm64 copy_highpage() assumes that the destination page is newly
allocated and not MTE-tagged (PG_mte_tagged unset) and warns
accordingly. However, following commit 060913999d7a ("mm: migrate:
support poisoned recover from migrate folio"), folio_mc_copy() is called
before __folio_migrate_mapping(). If the latter fails (-EAGAIN), the
copy will be done again to the same destination page. Since
copy_highpage() already set the PG_mte_tagged flag, this second copy
will warn.
Replace the WARN_ON_ONCE(page already tagged) in the arm64
copy_highpage() with a comment. |
| In the Linux kernel, the following vulnerability has been resolved:
sysfs: check visibility before changing group attribute ownership
Since commit 0c17270f9b92 ("net: sysfs: Implement is_visible for
phys_(port_id, port_name, switch_id)"), __dev_change_net_namespace() can
hit WARN_ON() when trying to change owner of a file that isn't visible.
See the trace below:
WARNING: CPU: 6 PID: 2938 at net/core/dev.c:12410 __dev_change_net_namespace+0xb89/0xc30
CPU: 6 UID: 0 PID: 2938 Comm: incusd Not tainted 6.17.1-1-mainline #1 PREEMPT(full) 4b783b4a638669fb644857f484487d17cb45ed1f
Hardware name: Framework Laptop 13 (AMD Ryzen 7040Series)/FRANMDCP07, BIOS 03.07 02/19/2025
RIP: 0010:__dev_change_net_namespace+0xb89/0xc30
[...]
Call Trace:
<TASK>
? if6_seq_show+0x30/0x50
do_setlink.isra.0+0xc7/0x1270
? __nla_validate_parse+0x5c/0xcc0
? security_capable+0x94/0x1a0
rtnl_newlink+0x858/0xc20
? update_curr+0x8e/0x1c0
? update_entity_lag+0x71/0x80
? sched_balance_newidle+0x358/0x450
? psi_task_switch+0x113/0x2a0
? __pfx_rtnl_newlink+0x10/0x10
rtnetlink_rcv_msg+0x346/0x3e0
? sched_clock+0x10/0x30
? __pfx_rtnetlink_rcv_msg+0x10/0x10
netlink_rcv_skb+0x59/0x110
netlink_unicast+0x285/0x3c0
? __alloc_skb+0xdb/0x1a0
netlink_sendmsg+0x20d/0x430
____sys_sendmsg+0x39f/0x3d0
? import_iovec+0x2f/0x40
___sys_sendmsg+0x99/0xe0
__sys_sendmsg+0x8a/0xf0
do_syscall_64+0x81/0x970
? __sys_bind+0xe3/0x110
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? sock_alloc_file+0x63/0xc0
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? alloc_fd+0x12e/0x190
? put_unused_fd+0x2a/0x70
? do_sys_openat2+0xa2/0xe0
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? exc_page_fault+0x7e/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
</TASK>
Fix this by checking is_visible() before trying to touch the attribute. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: stacktrace: Disable KASAN checks for non-current tasks
Unwinding the stack of a task other than current, KASAN would report
"BUG: KASAN: out-of-bounds in walk_stackframe+0x41c/0x460"
There is a same issue on x86 and has been resolved by the commit
84936118bdf3 ("x86/unwind: Disable KASAN checks for non-current tasks")
The solution could be applied to RISC-V too.
This patch also can solve the issue:
https://seclists.org/oss-sec/2025/q4/23
[pjw@kernel.org: clean up checkpatch issues] |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel: Fix KASAN global-out-of-bounds warning
When running "perf mem record" command on CWF, the below KASAN
global-out-of-bounds warning is seen.
==================================================================
BUG: KASAN: global-out-of-bounds in cmt_latency_data+0x176/0x1b0
Read of size 4 at addr ffffffffb721d000 by task dtlb/9850
Call Trace:
kasan_report+0xb8/0xf0
cmt_latency_data+0x176/0x1b0
setup_arch_pebs_sample_data+0xf49/0x2560
intel_pmu_drain_arch_pebs+0x577/0xb00
handle_pmi_common+0x6c4/0xc80
The issue is caused by below code in __grt_latency_data(). The code
tries to access x86_hybrid_pmu structure which doesn't exist on
non-hybrid platform like CWF.
WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big)
So add is_hybrid() check before calling this WARN_ON_ONCE to fix the
global-out-of-bounds access issue. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: ext4: change GFP_KERNEL to GFP_NOFS to avoid deadlock
The parent function ext4_xattr_inode_lookup_create already uses GFP_NOFS for memory alloction, so the function ext4_xattr_inode_cache_find should use same gfp_flag. |