| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: fix the deadlock of enetc_mdio_lock
After applying the workaround for err050089, the LS1028A platform
experiences RCU stalls on RT kernel. This issue is caused by the
recursive acquisition of the read lock enetc_mdio_lock. Here list some
of the call stacks identified under the enetc_poll path that may lead to
a deadlock:
enetc_poll
-> enetc_lock_mdio
-> enetc_clean_rx_ring OR napi_complete_done
-> napi_gro_receive
-> enetc_start_xmit
-> enetc_lock_mdio
-> enetc_map_tx_buffs
-> enetc_unlock_mdio
-> enetc_unlock_mdio
After enetc_poll acquires the read lock, a higher-priority writer attempts
to acquire the lock, causing preemption. The writer detects that a
read lock is already held and is scheduled out. However, readers under
enetc_poll cannot acquire the read lock again because a writer is already
waiting, leading to a thread hang.
Currently, the deadlock is avoided by adjusting enetc_lock_mdio to prevent
recursive lock acquisition. |
| In the Linux kernel, the following vulnerability has been resolved:
slab: Avoid race on slab->obj_exts in alloc_slab_obj_exts
If two competing threads enter alloc_slab_obj_exts() and one of them
fails to allocate the object extension vector, it might override the
valid slab->obj_exts allocated by the other thread with
OBJEXTS_ALLOC_FAIL. This will cause the thread that lost this race and
expects a valid pointer to dereference a NULL pointer later on.
Update slab->obj_exts atomically using cmpxchg() to avoid
slab->obj_exts overrides by racing threads.
Thanks for Vlastimil and Suren's help with debugging. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: RX, Fix generating skb from non-linear xdp_buff for striding RQ
XDP programs can change the layout of an xdp_buff through
bpf_xdp_adjust_tail() and bpf_xdp_adjust_head(). Therefore, the driver
cannot assume the size of the linear data area nor fragments. Fix the
bug in mlx5 by generating skb according to xdp_buff after XDP programs
run.
Currently, when handling multi-buf XDP, the mlx5 driver assumes the
layout of an xdp_buff to be unchanged. That is, the linear data area
continues to be empty and fragments remain the same. This may cause
the driver to generate erroneous skb or triggering a kernel
warning. When an XDP program added linear data through
bpf_xdp_adjust_head(), the linear data will be ignored as
mlx5e_build_linear_skb() builds an skb without linear data and then
pull data from fragments to fill the linear data area. When an XDP
program has shrunk the non-linear data through bpf_xdp_adjust_tail(),
the delta passed to __pskb_pull_tail() may exceed the actual nonlinear
data size and trigger the BUG_ON in it.
To fix the issue, first record the original number of fragments. If the
number of fragments changes after the XDP program runs, rewind the end
fragment pointer by the difference and recalculate the truesize. Then,
build the skb with the linear data area matching the xdp_buff. Finally,
only pull data in if there is non-linear data and fill the linear part
up to 256 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/mellanox: mlxbf-pmc: add sysfs_attr_init() to count_clock init
The lock-related debug logic (CONFIG_LOCK_STAT) in the kernel is noting
the following warning when the BlueField-3 SOC is booted:
BUG: key ffff00008a3402a8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 4 PID: 592 at kernel/locking/lockdep.c:4801 lockdep_init_map_type+0x1d4/0x2a0
<snip>
Call trace:
lockdep_init_map_type+0x1d4/0x2a0
__kernfs_create_file+0x84/0x140
sysfs_add_file_mode_ns+0xcc/0x1cc
internal_create_group+0x110/0x3d4
internal_create_groups.part.0+0x54/0xcc
sysfs_create_groups+0x24/0x40
device_add+0x6e8/0x93c
device_register+0x28/0x40
__hwmon_device_register+0x4b0/0x8a0
devm_hwmon_device_register_with_groups+0x7c/0xe0
mlxbf_pmc_probe+0x1e8/0x3e0 [mlxbf_pmc]
platform_probe+0x70/0x110
The mlxbf_pmc driver must call sysfs_attr_init() during the
initialization of the "count_clock" data structure to avoid
this warning. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Do not warn if the page is already tagged in copy_highpage()
The arm64 copy_highpage() assumes that the destination page is newly
allocated and not MTE-tagged (PG_mte_tagged unset) and warns
accordingly. However, following commit 060913999d7a ("mm: migrate:
support poisoned recover from migrate folio"), folio_mc_copy() is called
before __folio_migrate_mapping(). If the latter fails (-EAGAIN), the
copy will be done again to the same destination page. Since
copy_highpage() already set the PG_mte_tagged flag, this second copy
will warn.
Replace the WARN_ON_ONCE(page already tagged) in the arm64
copy_highpage() with a comment. |
| In the Linux kernel, the following vulnerability has been resolved:
sysfs: check visibility before changing group attribute ownership
Since commit 0c17270f9b92 ("net: sysfs: Implement is_visible for
phys_(port_id, port_name, switch_id)"), __dev_change_net_namespace() can
hit WARN_ON() when trying to change owner of a file that isn't visible.
See the trace below:
WARNING: CPU: 6 PID: 2938 at net/core/dev.c:12410 __dev_change_net_namespace+0xb89/0xc30
CPU: 6 UID: 0 PID: 2938 Comm: incusd Not tainted 6.17.1-1-mainline #1 PREEMPT(full) 4b783b4a638669fb644857f484487d17cb45ed1f
Hardware name: Framework Laptop 13 (AMD Ryzen 7040Series)/FRANMDCP07, BIOS 03.07 02/19/2025
RIP: 0010:__dev_change_net_namespace+0xb89/0xc30
[...]
Call Trace:
<TASK>
? if6_seq_show+0x30/0x50
do_setlink.isra.0+0xc7/0x1270
? __nla_validate_parse+0x5c/0xcc0
? security_capable+0x94/0x1a0
rtnl_newlink+0x858/0xc20
? update_curr+0x8e/0x1c0
? update_entity_lag+0x71/0x80
? sched_balance_newidle+0x358/0x450
? psi_task_switch+0x113/0x2a0
? __pfx_rtnl_newlink+0x10/0x10
rtnetlink_rcv_msg+0x346/0x3e0
? sched_clock+0x10/0x30
? __pfx_rtnetlink_rcv_msg+0x10/0x10
netlink_rcv_skb+0x59/0x110
netlink_unicast+0x285/0x3c0
? __alloc_skb+0xdb/0x1a0
netlink_sendmsg+0x20d/0x430
____sys_sendmsg+0x39f/0x3d0
? import_iovec+0x2f/0x40
___sys_sendmsg+0x99/0xe0
__sys_sendmsg+0x8a/0xf0
do_syscall_64+0x81/0x970
? __sys_bind+0xe3/0x110
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? sock_alloc_file+0x63/0xc0
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? alloc_fd+0x12e/0x190
? put_unused_fd+0x2a/0x70
? do_sys_openat2+0xa2/0xe0
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? exc_page_fault+0x7e/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
</TASK>
Fix this by checking is_visible() before trying to touch the attribute. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: stacktrace: Disable KASAN checks for non-current tasks
Unwinding the stack of a task other than current, KASAN would report
"BUG: KASAN: out-of-bounds in walk_stackframe+0x41c/0x460"
There is a same issue on x86 and has been resolved by the commit
84936118bdf3 ("x86/unwind: Disable KASAN checks for non-current tasks")
The solution could be applied to RISC-V too.
This patch also can solve the issue:
https://seclists.org/oss-sec/2025/q4/23
[pjw@kernel.org: clean up checkpatch issues] |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel: Fix KASAN global-out-of-bounds warning
When running "perf mem record" command on CWF, the below KASAN
global-out-of-bounds warning is seen.
==================================================================
BUG: KASAN: global-out-of-bounds in cmt_latency_data+0x176/0x1b0
Read of size 4 at addr ffffffffb721d000 by task dtlb/9850
Call Trace:
kasan_report+0xb8/0xf0
cmt_latency_data+0x176/0x1b0
setup_arch_pebs_sample_data+0xf49/0x2560
intel_pmu_drain_arch_pebs+0x577/0xb00
handle_pmi_common+0x6c4/0xc80
The issue is caused by below code in __grt_latency_data(). The code
tries to access x86_hybrid_pmu structure which doesn't exist on
non-hybrid platform like CWF.
WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big)
So add is_hybrid() check before calling this WARN_ON_ONCE to fix the
global-out-of-bounds access issue. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: ext4: change GFP_KERNEL to GFP_NOFS to avoid deadlock
The parent function ext4_xattr_inode_lookup_create already uses GFP_NOFS for memory alloction, so the function ext4_xattr_inode_cache_find should use same gfp_flag. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix multifs mds auth caps issue
The mds auth caps check should also validate the
fsname along with the associated caps. Not doing
so would result in applying the mds auth caps of
one fs on to the other fs in a multifs ceph cluster.
The bug causes multiple issues w.r.t user
authentication, following is one such example.
Steps to Reproduce (on vstart cluster):
1. Create two file systems in a cluster, say 'fsname1' and 'fsname2'
2. Authorize read only permission to the user 'client.usr' on fs 'fsname1'
$ceph fs authorize fsname1 client.usr / r
3. Authorize read and write permission to the same user 'client.usr' on fs 'fsname2'
$ceph fs authorize fsname2 client.usr / rw
4. Update the keyring
$ceph auth get client.usr >> ./keyring
With above permssions for the user 'client.usr', following is the
expectation.
a. The 'client.usr' should be able to only read the contents
and not allowed to create or delete files on file system 'fsname1'.
b. The 'client.usr' should be able to read/write on file system 'fsname2'.
But, with this bug, the 'client.usr' is allowed to read/write on file
system 'fsname1'. See below.
5. Mount the file system 'fsname1' with the user 'client.usr'
$sudo bin/mount.ceph usr@.fsname1=/ /kmnt_fsname1_usr/
6. Try creating a file on file system 'fsname1' with user 'client.usr'. This
should fail but passes with this bug.
$touch /kmnt_fsname1_usr/file1
7. Mount the file system 'fsname1' with the user 'client.admin' and create a
file.
$sudo bin/mount.ceph admin@.fsname1=/ /kmnt_fsname1_admin
$echo "data" > /kmnt_fsname1_admin/admin_file1
8. Try removing an existing file on file system 'fsname1' with the user
'client.usr'. This shoudn't succeed but succeeds with the bug.
$rm -f /kmnt_fsname1_usr/admin_file1
For more information, please take a look at the corresponding mds/fuse patch
and tests added by looking into the tracker mentioned below.
v2: Fix a possible null dereference in doutc
v3: Don't store fsname from mdsmap, validate against
ceph_mount_options's fsname and use it
v4: Code refactor, better warning message and
fix possible compiler warning
[ Slava.Dubeyko: "fsname check failed" -> "fsname mismatch" ] |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: fix field-spanning memcpy warning in AH output
Fix field-spanning memcpy warnings in ah6_output() and
ah6_output_done() where extension headers are copied to/from IPv6
address fields, triggering fortify-string warnings about writes beyond
the 16-byte address fields.
memcpy: detected field-spanning write (size 40) of single field "&top_iph->saddr" at net/ipv6/ah6.c:439 (size 16)
WARNING: CPU: 0 PID: 8838 at net/ipv6/ah6.c:439 ah6_output+0xe7e/0x14e0 net/ipv6/ah6.c:439
The warnings are false positives as the extension headers are
intentionally placed after the IPv6 header in memory. Fix by properly
copying addresses and extension headers separately, and introduce
helper functions to avoid code duplication. |
| In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix deadlock in memory allocation under spinlock
Fix a AA deadlock in refill_skbs() where memory allocation while holding
skb_pool->lock can trigger a recursive lock acquisition attempt.
The deadlock scenario occurs when the system is under severe memory
pressure:
1. refill_skbs() acquires skb_pool->lock (spinlock)
2. alloc_skb() is called while holding the lock
3. Memory allocator fails and calls slab_out_of_memory()
4. This triggers printk() for the OOM warning
5. The console output path calls netpoll_send_udp()
6. netpoll_send_udp() attempts to acquire the same skb_pool->lock
7. Deadlock: the lock is already held by the same CPU
Call stack:
refill_skbs()
spin_lock_irqsave(&skb_pool->lock) <- lock acquired
__alloc_skb()
kmem_cache_alloc_node_noprof()
slab_out_of_memory()
printk()
console_flush_all()
netpoll_send_udp()
skb_dequeue()
spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt
This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb
refilling on critical path") which removed refill_skbs() from the
critical path (where nested printk was being deferred), letting nested
printk being called from inside refill_skbs()
Refactor refill_skbs() to never allocate memory while holding
the spinlock.
Another possible solution to fix this problem is protecting the
refill_skbs() from nested printks, basically calling
printk_deferred_{enter,exit}() in refill_skbs(), then, any nested
pr_warn() would be deferred.
I prefer this approach, given I _think_ it might be a good idea to move
the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having
the alloc_skb() outside of the lock will be necessary step.
There is a possible TOCTOU issue when checking for the pool length, and
queueing the new allocated skb, but, this is not an issue, given that
an extra SKB in the pool is harmless and it will be eventually used. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Do not kfree() devres managed rdev
Since the allocation of the drivers main structure was changed to
devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling
kfree() on it.
This fixes things exploding if the driver probe fails and devres cleans up
the rdev after we already free'd it.
(cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b) |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq/longhaul: handle NULL policy in longhaul_exit
longhaul_exit() was calling cpufreq_cpu_get(0) without checking
for a NULL policy pointer. On some systems, this could lead to a
NULL dereference and a kernel warning or panic.
This patch adds a check using unlikely() and returns early if the
policy is NULL.
Bugzilla: #219962 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: aspeed - fix double free caused by devm
The clock obtained via devm_clk_get_enabled() is automatically managed
by devres and will be disabled and freed on driver detach. Manually
calling clk_disable_unprepare() in error path and remove function
causes double free.
Remove the manual clock cleanup in both aspeed_acry_probe()'s error
path and aspeed_acry_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
ima: don't clear IMA_DIGSIG flag when setting or removing non-IMA xattr
Currently when both IMA and EVM are in fix mode, the IMA signature will
be reset to IMA hash if a program first stores IMA signature in
security.ima and then writes/removes some other security xattr for the
file.
For example, on Fedora, after booting the kernel with "ima_appraise=fix
evm=fix ima_policy=appraise_tcb" and installing rpm-plugin-ima,
installing/reinstalling a package will not make good reference IMA
signature generated. Instead IMA hash is generated,
# getfattr -m - -d -e hex /usr/bin/bash
# file: usr/bin/bash
security.ima=0x0404...
This happens because when setting security.selinux, the IMA_DIGSIG flag
that had been set early was cleared. As a result, IMA hash is generated
when the file is closed.
Similarly, IMA signature can be cleared on file close after removing
security xattr like security.evm or setting/removing ACL.
Prevent replacing the IMA file signature with a file hash, by preventing
the IMA_DIGSIG flag from being reset.
Here's a minimal C reproducer which sets security.selinux as the last
step which can also replaced by removing security.evm or setting ACL,
#include <stdio.h>
#include <sys/xattr.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
const char* file_path = "/usr/sbin/test_binary";
const char* hex_string = "030204d33204490066306402304";
int length = strlen(hex_string);
char* ima_attr_value;
int fd;
fd = open(file_path, O_WRONLY|O_CREAT|O_EXCL, 0644);
if (fd == -1) {
perror("Error opening file");
return 1;
}
ima_attr_value = (char*)malloc(length / 2 );
for (int i = 0, j = 0; i < length; i += 2, j++) {
sscanf(hex_string + i, "%2hhx", &ima_attr_value[j]);
}
if (fsetxattr(fd, "security.ima", ima_attr_value, length/2, 0) == -1) {
perror("Error setting extended attribute");
close(fd);
return 1;
}
const char* selinux_value= "system_u:object_r:bin_t:s0";
if (fsetxattr(fd, "security.selinux", selinux_value, strlen(selinux_value), 0) == -1) {
perror("Error setting extended attribute");
close(fd);
return 1;
}
close(fd);
return 0;
} |
| In the Linux kernel, the following vulnerability has been resolved:
nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing
Theoretically it's an oopsable race, but I don't believe one can manage
to hit it on real hardware; might become doable on a KVM, but it still
won't be easy to attack.
Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of
put_unaligned_be64(), we can put that under ->d_lock and be done with that. |
| In the Linux kernel, the following vulnerability has been resolved:
udp_tunnel: use netdev_warn() instead of netdev_WARN()
netdev_WARN() uses WARN/WARN_ON to print a backtrace along with
file and line information. In this case, udp_tunnel_nic_register()
returning an error is just a failed operation, not a kernel bug.
udp_tunnel_nic_register() can fail due to a memory allocation
failure (kzalloc() or udp_tunnel_nic_alloc()).
This is a normal runtime error and not a kernel bug.
Replace netdev_WARN() with netdev_warn() accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix null pointer dereference in bnxt_bs_trace_check_wrap()
With older FW, we may get the ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER
for FW trace data type that has not been initialized. This will result
in a crash in bnxt_bs_trace_type_wrap(). Add a guard to check for a
valid magic_byte pointer before proceeding. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/hdmi: Fix breakage at probing nvhdmi-mcp driver
After restructuring and splitting the HDMI codec driver code, each
HDMI codec driver contains the own build_controls and build_pcms ops.
A copy-n-paste error put the wrong entries for nvhdmi-mcp driver; both
build_controls and build_pcms are swapped. Unfortunately both
callbacks have the very same form, and the compiler didn't complain
it, either. This resulted in a NULL dereference because the PCM
instance hasn't been initialized at calling the build_controls
callback.
Fix it by passing the proper entries. |