| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| SitemagicCMS 4.4.3 contains a remote code execution vulnerability that allows attackers to upload malicious PHP files to the files/images directory. Attackers can upload a .phar file with system command execution payload to compromise the web application and execute arbitrary system commands. |
| In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name. |
| Python 3.x through 3.9.1 has a buffer overflow in PyCArg_repr in _ctypes/callproc.c, which may lead to remote code execution in certain Python applications that accept floating-point numbers as untrusted input, as demonstrated by a 1e300 argument to c_double.from_param. This occurs because sprintf is used unsafely. |
| A vulnerability was discovered in how p2p/p2p_pd.c in wpa_supplicant before 2.10 processes P2P (Wi-Fi Direct) provision discovery requests. It could result in denial of service or other impact (potentially execution of arbitrary code), for an attacker within radio range. |
| The client side in OpenSSH 5.7 through 8.4 has an Observable Discrepancy leading to an information leak in the algorithm negotiation. This allows man-in-the-middle attackers to target initial connection attempts (where no host key for the server has been cached by the client). NOTE: some reports state that 8.5 and 8.6 are also affected. |
| An issue was discovered in OpenSSH 7.9. Due to the scp implementation being derived from 1983 rcp, the server chooses which files/directories are sent to the client. However, the scp client only performs cursory validation of the object name returned (only directory traversal attacks are prevented). A malicious scp server (or Man-in-The-Middle attacker) can overwrite arbitrary files in the scp client target directory. If recursive operation (-r) is performed, the server can manipulate subdirectories as well (for example, to overwrite the .ssh/authorized_keys file). |
| In OpenSSH 7.9, due to accepting and displaying arbitrary stderr output from the server, a malicious server (or Man-in-The-Middle attacker) can manipulate the client output, for example to use ANSI control codes to hide additional files being transferred. |
| libxml2 20904-GITv2.9.4-16-g0741801 is vulnerable to a heap-based buffer over-read in the xmlDictComputeFastKey function in dict.c. This vulnerability causes programs that use libxml2, such as PHP, to crash. This vulnerability exists because of an incomplete fix for libxml2 Bug 759398. |
| Improper management of Path-relative stylesheet import in HCL BigFix Remote Control Lite Web Portal (versions 10.1.0.0326 and lower) may allow to execute malicious code in certain web pages. |
| Homarr is an open-source dashboard. Prior to version 1.45.3, it was possible to craft an input which allowed privilege escalation and getting access to groups of other users due to missing sanitization of inputs in ldap search query. The vulnerability could impact all instances using ldap authentication where a malicious actor had access to a user account. Version 1.45.3 has a patch for the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix general protection fault in __smc_diag_dump
The syzbot report a crash:
Oops: general protection fault, probably for non-canonical address 0xfbd5a5d5a0000003: 0000 [#1] SMP KASAN NOPTI
KASAN: maybe wild-memory-access in range [0xdead4ead00000018-0xdead4ead0000001f]
CPU: 1 UID: 0 PID: 6949 Comm: syz.0.335 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
RIP: 0010:smc_diag_msg_common_fill net/smc/smc_diag.c:44 [inline]
RIP: 0010:__smc_diag_dump.constprop.0+0x3ca/0x2550 net/smc/smc_diag.c:89
Call Trace:
<TASK>
smc_diag_dump_proto+0x26d/0x420 net/smc/smc_diag.c:217
smc_diag_dump+0x27/0x90 net/smc/smc_diag.c:234
netlink_dump+0x539/0xd30 net/netlink/af_netlink.c:2327
__netlink_dump_start+0x6d6/0x990 net/netlink/af_netlink.c:2442
netlink_dump_start include/linux/netlink.h:341 [inline]
smc_diag_handler_dump+0x1f9/0x240 net/smc/smc_diag.c:251
__sock_diag_cmd net/core/sock_diag.c:249 [inline]
sock_diag_rcv_msg+0x438/0x790 net/core/sock_diag.c:285
netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x5a7/0x870 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg net/socket.c:729 [inline]
____sys_sendmsg+0xa95/0xc70 net/socket.c:2614
___sys_sendmsg+0x134/0x1d0 net/socket.c:2668
__sys_sendmsg+0x16d/0x220 net/socket.c:2700
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4e0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
The process like this:
(CPU1) | (CPU2)
---------------------------------|-------------------------------
inet_create() |
// init clcsock to NULL |
sk = sk_alloc() |
|
// unexpectedly change clcsock |
inet_init_csk_locks() |
|
// add sk to hash table |
smc_inet_init_sock() |
smc_sk_init() |
smc_hash_sk() |
| // traverse the hash table
| smc_diag_dump_proto
| __smc_diag_dump()
| // visit wrong clcsock
| smc_diag_msg_common_fill()
// alloc clcsock |
smc_create_clcsk |
sock_create_kern |
With CONFIG_DEBUG_LOCK_ALLOC=y, the smc->clcsock is unexpectedly changed
in inet_init_csk_locks(). The INET_PROTOSW_ICSK flag is no need by smc,
just remove it.
After removing the INET_PROTOSW_ICSK flag, this patch alse revert
commit 6fd27ea183c2 ("net/smc: fix lacks of icsk_syn_mss with IPPROTO_SMC")
to avoid casting smc_sock to inet_connection_sock. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/atom: Check kcalloc() for WS buffer in amdgpu_atom_execute_table_locked()
kcalloc() may fail. When WS is non-zero and allocation fails, ectx.ws
remains NULL while ectx.ws_size is set, leading to a potential NULL
pointer dereference in atom_get_src_int() when accessing WS entries.
Return -ENOMEM on allocation failure to avoid the NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Ensure XFD state on signal delivery
Sean reported [1] the following splat when running KVM tests:
WARNING: CPU: 232 PID: 15391 at xfd_validate_state+0x65/0x70
Call Trace:
<TASK>
fpu__clear_user_states+0x9c/0x100
arch_do_signal_or_restart+0x142/0x210
exit_to_user_mode_loop+0x55/0x100
do_syscall_64+0x205/0x2c0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Chao further identified [2] a reproducible scenario involving signal
delivery: a non-AMX task is preempted by an AMX-enabled task which
modifies the XFD MSR.
When the non-AMX task resumes and reloads XSTATE with init values,
a warning is triggered due to a mismatch between fpstate::xfd and the
CPU's current XFD state. fpu__clear_user_states() does not currently
re-synchronize the XFD state after such preemption.
Invoke xfd_update_state() which detects and corrects the mismatch if
there is a dynamic feature.
This also benefits the sigreturn path, as fpu__restore_sig() may call
fpu__clear_user_states() when the sigframe is inaccessible.
[ dhansen: minor changelog munging ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Remove calls to drm_put_dev()
Since the allocation of the drivers main structure was changed to
devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd
should be done by devres.
However, drm_put_dev() is still in the probe error and device remove
paths. When the driver fails to probe warnings like the following are
shown because devres is trying to drm_put_dev() after the driver
already did it.
[ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22
[ 5.649605] ------------[ cut here ]------------
[ 5.649607] refcount_t: underflow; use-after-free.
[ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110
(cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4) |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Do not warn in ring_buffer_map_get_reader() when reader catches up
The function ring_buffer_map_get_reader() is a bit more strict than the
other get reader functions, and except for certain situations the
rb_get_reader_page() should not return NULL. If it does, it triggers a
warning.
This warning was triggering but after looking at why, it was because
another acceptable situation was happening and it wasn't checked for.
If the reader catches up to the writer and there's still data to be read
on the reader page, then the rb_get_reader_page() will return NULL as
there's no new page to get.
In this situation, the reader page should not be updated and no warning
should trigger. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix lock warning in amdgpu_userq_fence_driver_process
Fix a potential deadlock caused by inconsistent spinlock usage
between interrupt and process contexts in the userq fence driver.
The issue occurs when amdgpu_userq_fence_driver_process() is called
from both:
- Interrupt context: gfx_v11_0_eop_irq() -> amdgpu_userq_fence_driver_process()
- Process context: amdgpu_eviction_fence_suspend_worker() ->
amdgpu_userq_fence_driver_force_completion() -> amdgpu_userq_fence_driver_process()
In interrupt context, the spinlock was acquired without disabling
interrupts, leaving it in {IN-HARDIRQ-W} state. When the same lock
is acquired in process context, the kernel detects inconsistent
locking since the process context acquisition would enable interrupts
while holding a lock previously acquired in interrupt context.
Kernel log shows:
[ 4039.310790] inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
[ 4039.310804] kworker/7:2/409 [HC0[0]:SC0[0]:HE1:SE1] takes:
[ 4039.310818] ffff9284e1bed000 (&fence_drv->fence_list_lock){?...}-{3:3},
[ 4039.310993] {IN-HARDIRQ-W} state was registered at:
[ 4039.311004] lock_acquire+0xc6/0x300
[ 4039.311018] _raw_spin_lock+0x39/0x80
[ 4039.311031] amdgpu_userq_fence_driver_process.part.0+0x30/0x180 [amdgpu]
[ 4039.311146] amdgpu_userq_fence_driver_process+0x17/0x30 [amdgpu]
[ 4039.311257] gfx_v11_0_eop_irq+0x132/0x170 [amdgpu]
Fix by using spin_lock_irqsave()/spin_unlock_irqrestore() to properly
manage interrupt state regardless of calling context.
(cherry picked from commit ded3ad780cf97a04927773c4600823b84f7f3cc2) |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: account for current allocated stack depth in widen_imprecise_scalars()
The usage pattern for widen_imprecise_scalars() looks as follows:
prev_st = find_prev_entry(env, ...);
queued_st = push_stack(...);
widen_imprecise_scalars(env, prev_st, queued_st);
Where prev_st is an ancestor of the queued_st in the explored states
tree. This ancestor is not guaranteed to have same allocated stack
depth as queued_st. E.g. in the following case:
def main():
for i in 1..2:
foo(i) // same callsite, differnt param
def foo(i):
if i == 1:
use 128 bytes of stack
iterator based loop
Here, for a second 'foo' call prev_st->allocated_stack is 128,
while queued_st->allocated_stack is much smaller.
widen_imprecise_scalars() needs to take this into account and avoid
accessing bpf_verifier_state->frame[*]->stack out of bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: validate record offset in hfsplus_bmap_alloc
hfsplus_bmap_alloc can trigger a crash if a
record offset or length is larger than node_size
[ 15.264282] BUG: KASAN: slab-out-of-bounds in hfsplus_bmap_alloc+0x887/0x8b0
[ 15.265192] Read of size 8 at addr ffff8881085ca188 by task test/183
[ 15.265949]
[ 15.266163] CPU: 0 UID: 0 PID: 183 Comm: test Not tainted 6.17.0-rc2-gc17b750b3ad9 #14 PREEMPT(voluntary)
[ 15.266165] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 15.266167] Call Trace:
[ 15.266168] <TASK>
[ 15.266169] dump_stack_lvl+0x53/0x70
[ 15.266173] print_report+0xd0/0x660
[ 15.266181] kasan_report+0xce/0x100
[ 15.266185] hfsplus_bmap_alloc+0x887/0x8b0
[ 15.266208] hfs_btree_inc_height.isra.0+0xd5/0x7c0
[ 15.266217] hfsplus_brec_insert+0x870/0xb00
[ 15.266222] __hfsplus_ext_write_extent+0x428/0x570
[ 15.266225] __hfsplus_ext_cache_extent+0x5e/0x910
[ 15.266227] hfsplus_ext_read_extent+0x1b2/0x200
[ 15.266233] hfsplus_file_extend+0x5a7/0x1000
[ 15.266237] hfsplus_get_block+0x12b/0x8c0
[ 15.266238] __block_write_begin_int+0x36b/0x12c0
[ 15.266251] block_write_begin+0x77/0x110
[ 15.266252] cont_write_begin+0x428/0x720
[ 15.266259] hfsplus_write_begin+0x51/0x100
[ 15.266262] cont_write_begin+0x272/0x720
[ 15.266270] hfsplus_write_begin+0x51/0x100
[ 15.266274] generic_perform_write+0x321/0x750
[ 15.266285] generic_file_write_iter+0xc3/0x310
[ 15.266289] __kernel_write_iter+0x2fd/0x800
[ 15.266296] dump_user_range+0x2ea/0x910
[ 15.266301] elf_core_dump+0x2a94/0x2ed0
[ 15.266320] vfs_coredump+0x1d85/0x45e0
[ 15.266349] get_signal+0x12e3/0x1990
[ 15.266357] arch_do_signal_or_restart+0x89/0x580
[ 15.266362] irqentry_exit_to_user_mode+0xab/0x110
[ 15.266364] asm_exc_page_fault+0x26/0x30
[ 15.266366] RIP: 0033:0x41bd35
[ 15.266367] Code: bc d1 f3 0f 7f 27 f3 0f 7f 6f 10 f3 0f 7f 77 20 f3 0f 7f 7f 30 49 83 c0 0f 49 29 d0 48 8d 7c 17 31 e9 9f 0b 00 00 66 0f ef c0 <f3> 0f 6f 0e f3 0f 6f 56 10 66 0f 74 c1 66 0f d7 d0 49 83 f8f
[ 15.266369] RSP: 002b:00007ffc9e62d078 EFLAGS: 00010283
[ 15.266371] RAX: 00007ffc9e62d100 RBX: 0000000000000000 RCX: 0000000000000000
[ 15.266372] RDX: 00000000000000e0 RSI: 0000000000000000 RDI: 00007ffc9e62d100
[ 15.266373] RBP: 0000400000000040 R08: 00000000000000e0 R09: 0000000000000000
[ 15.266374] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 15.266375] R13: 0000000000000000 R14: 0000000000000000 R15: 0000400000000000
[ 15.266376] </TASK>
When calling hfsplus_bmap_alloc to allocate a free node, this function
first retrieves the bitmap from header node and map node using node->page
together with the offset and length from hfs_brec_lenoff
```
len = hfs_brec_lenoff(node, 2, &off16);
off = off16;
off += node->page_offset;
pagep = node->page + (off >> PAGE_SHIFT);
data = kmap_local_page(*pagep);
```
However, if the retrieved offset or length is invalid(i.e. exceeds
node_size), the code may end up accessing pages outside the allocated
range for this node.
This patch adds proper validation of both offset and length before use,
preventing out-of-bounds page access. Move is_bnode_offset_valid and
check_and_correct_requested_length to hfsplus_fs.h, as they may be
required by other functions. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix KMSAN uninit-value issue in hfsplus_delete_cat()
The syzbot reported issue in hfsplus_delete_cat():
[ 70.682285][ T9333] =====================================================
[ 70.682943][ T9333] BUG: KMSAN: uninit-value in hfsplus_subfolders_dec+0x1d7/0x220
[ 70.683640][ T9333] hfsplus_subfolders_dec+0x1d7/0x220
[ 70.684141][ T9333] hfsplus_delete_cat+0x105d/0x12b0
[ 70.684621][ T9333] hfsplus_rmdir+0x13d/0x310
[ 70.685048][ T9333] vfs_rmdir+0x5ba/0x810
[ 70.685447][ T9333] do_rmdir+0x964/0xea0
[ 70.685833][ T9333] __x64_sys_rmdir+0x71/0xb0
[ 70.686260][ T9333] x64_sys_call+0xcd8/0x3cf0
[ 70.686695][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.687119][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.687646][ T9333]
[ 70.687856][ T9333] Uninit was stored to memory at:
[ 70.688311][ T9333] hfsplus_subfolders_inc+0x1c2/0x1d0
[ 70.688779][ T9333] hfsplus_create_cat+0x148e/0x1800
[ 70.689231][ T9333] hfsplus_mknod+0x27f/0x600
[ 70.689730][ T9333] hfsplus_mkdir+0x5a/0x70
[ 70.690146][ T9333] vfs_mkdir+0x483/0x7a0
[ 70.690545][ T9333] do_mkdirat+0x3f2/0xd30
[ 70.690944][ T9333] __x64_sys_mkdir+0x9a/0xf0
[ 70.691380][ T9333] x64_sys_call+0x2f89/0x3cf0
[ 70.691816][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.692229][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.692773][ T9333]
[ 70.692990][ T9333] Uninit was stored to memory at:
[ 70.693469][ T9333] hfsplus_subfolders_inc+0x1c2/0x1d0
[ 70.693960][ T9333] hfsplus_create_cat+0x148e/0x1800
[ 70.694438][ T9333] hfsplus_fill_super+0x21c1/0x2700
[ 70.694911][ T9333] mount_bdev+0x37b/0x530
[ 70.695320][ T9333] hfsplus_mount+0x4d/0x60
[ 70.695729][ T9333] legacy_get_tree+0x113/0x2c0
[ 70.696167][ T9333] vfs_get_tree+0xb3/0x5c0
[ 70.696588][ T9333] do_new_mount+0x73e/0x1630
[ 70.697013][ T9333] path_mount+0x6e3/0x1eb0
[ 70.697425][ T9333] __se_sys_mount+0x733/0x830
[ 70.697857][ T9333] __x64_sys_mount+0xe4/0x150
[ 70.698269][ T9333] x64_sys_call+0x2691/0x3cf0
[ 70.698704][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.699117][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.699730][ T9333]
[ 70.699946][ T9333] Uninit was created at:
[ 70.700378][ T9333] __alloc_pages_noprof+0x714/0xe60
[ 70.700843][ T9333] alloc_pages_mpol_noprof+0x2a2/0x9b0
[ 70.701331][ T9333] alloc_pages_noprof+0xf8/0x1f0
[ 70.701774][ T9333] allocate_slab+0x30e/0x1390
[ 70.702194][ T9333] ___slab_alloc+0x1049/0x33a0
[ 70.702635][ T9333] kmem_cache_alloc_lru_noprof+0x5ce/0xb20
[ 70.703153][ T9333] hfsplus_alloc_inode+0x5a/0xd0
[ 70.703598][ T9333] alloc_inode+0x82/0x490
[ 70.703984][ T9333] iget_locked+0x22e/0x1320
[ 70.704428][ T9333] hfsplus_iget+0x5c/0xba0
[ 70.704827][ T9333] hfsplus_btree_open+0x135/0x1dd0
[ 70.705291][ T9333] hfsplus_fill_super+0x1132/0x2700
[ 70.705776][ T9333] mount_bdev+0x37b/0x530
[ 70.706171][ T9333] hfsplus_mount+0x4d/0x60
[ 70.706579][ T9333] legacy_get_tree+0x113/0x2c0
[ 70.707019][ T9333] vfs_get_tree+0xb3/0x5c0
[ 70.707444][ T9333] do_new_mount+0x73e/0x1630
[ 70.707865][ T9333] path_mount+0x6e3/0x1eb0
[ 70.708270][ T9333] __se_sys_mount+0x733/0x830
[ 70.708711][ T9333] __x64_sys_mount+0xe4/0x150
[ 70.709158][ T9333] x64_sys_call+0x2691/0x3cf0
[ 70.709630][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.710053][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.710611][ T9333]
[ 70.710842][ T9333] CPU: 3 UID: 0 PID: 9333 Comm: repro Not tainted 6.12.0-rc6-dirty #17
[ 70.711568][ T9333] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.712490][ T9333] =====================================================
[ 70.713085][ T9333] Disabling lock debugging due to kernel taint
[ 70.713618][ T9333] Kernel panic - not syncing: kmsan.panic set ...
[ 70.714159][ T9333]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: fix possible deadlock while configuring policy
Following deadlock can be triggered easily by lockdep:
WARNING: possible circular locking dependency detected
6.17.0-rc3-00124-ga12c2658ced0 #1665 Not tainted
------------------------------------------------------
check/1334 is trying to acquire lock:
ff1100011d9d0678 (&q->sysfs_lock){+.+.}-{4:4}, at: blk_unregister_queue+0x53/0x180
but task is already holding lock:
ff1100011d9d00e0 (&q->q_usage_counter(queue)#3){++++}-{0:0}, at: del_gendisk+0xba/0x110
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&q->q_usage_counter(queue)#3){++++}-{0:0}:
blk_queue_enter+0x40b/0x470
blkg_conf_prep+0x7b/0x3c0
tg_set_limit+0x10a/0x3e0
cgroup_file_write+0xc6/0x420
kernfs_fop_write_iter+0x189/0x280
vfs_write+0x256/0x490
ksys_write+0x83/0x190
__x64_sys_write+0x21/0x30
x64_sys_call+0x4608/0x4630
do_syscall_64+0xdb/0x6b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #1 (&q->rq_qos_mutex){+.+.}-{4:4}:
__mutex_lock+0xd8/0xf50
mutex_lock_nested+0x2b/0x40
wbt_init+0x17e/0x280
wbt_enable_default+0xe9/0x140
blk_register_queue+0x1da/0x2e0
__add_disk+0x38c/0x5d0
add_disk_fwnode+0x89/0x250
device_add_disk+0x18/0x30
virtblk_probe+0x13a3/0x1800
virtio_dev_probe+0x389/0x610
really_probe+0x136/0x620
__driver_probe_device+0xb3/0x230
driver_probe_device+0x2f/0xe0
__driver_attach+0x158/0x250
bus_for_each_dev+0xa9/0x130
driver_attach+0x26/0x40
bus_add_driver+0x178/0x3d0
driver_register+0x7d/0x1c0
__register_virtio_driver+0x2c/0x60
virtio_blk_init+0x6f/0xe0
do_one_initcall+0x94/0x540
kernel_init_freeable+0x56a/0x7b0
kernel_init+0x2b/0x270
ret_from_fork+0x268/0x4c0
ret_from_fork_asm+0x1a/0x30
-> #0 (&q->sysfs_lock){+.+.}-{4:4}:
__lock_acquire+0x1835/0x2940
lock_acquire+0xf9/0x450
__mutex_lock+0xd8/0xf50
mutex_lock_nested+0x2b/0x40
blk_unregister_queue+0x53/0x180
__del_gendisk+0x226/0x690
del_gendisk+0xba/0x110
sd_remove+0x49/0xb0 [sd_mod]
device_remove+0x87/0xb0
device_release_driver_internal+0x11e/0x230
device_release_driver+0x1a/0x30
bus_remove_device+0x14d/0x220
device_del+0x1e1/0x5a0
__scsi_remove_device+0x1ff/0x2f0
scsi_remove_device+0x37/0x60
sdev_store_delete+0x77/0x100
dev_attr_store+0x1f/0x40
sysfs_kf_write+0x65/0x90
kernfs_fop_write_iter+0x189/0x280
vfs_write+0x256/0x490
ksys_write+0x83/0x190
__x64_sys_write+0x21/0x30
x64_sys_call+0x4608/0x4630
do_syscall_64+0xdb/0x6b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
other info that might help us debug this:
Chain exists of:
&q->sysfs_lock --> &q->rq_qos_mutex --> &q->q_usage_counter(queue)#3
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&q->q_usage_counter(queue)#3);
lock(&q->rq_qos_mutex);
lock(&q->q_usage_counter(queue)#3);
lock(&q->sysfs_lock);
Root cause is that queue_usage_counter is grabbed with rq_qos_mutex
held in blkg_conf_prep(), while queue should be freezed before
rq_qos_mutex from other context.
The blk_queue_enter() from blkg_conf_prep() is used to protect against
policy deactivation, which is already protected with blkcg_mutex, hence
convert blk_queue_enter() to blkcg_mutex to fix this problem. Meanwhile,
consider that blkcg_mutex is held after queue is freezed from policy
deactivation, also convert blkg_alloc() to use GFP_NOIO. |