Search Results (324648 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54123 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid10: fix memleak for 'conf->bio_split' In the error path of raid10_run(), 'conf' need be freed, however, 'conf->bio_split' is missed and memory will be leaked. Since there are 3 places to free 'conf', factor out a helper to fix the problem.
CVE-2023-54124 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to drop all dirty pages during umount() if cp_error is set xfstest generic/361 reports a bug as below: f2fs_bug_on(sbi, sbi->fsync_node_num); kernel BUG at fs/f2fs/super.c:1627! RIP: 0010:f2fs_put_super+0x3a8/0x3b0 Call Trace: generic_shutdown_super+0x8c/0x1b0 kill_block_super+0x2b/0x60 kill_f2fs_super+0x87/0x110 deactivate_locked_super+0x39/0x80 deactivate_super+0x46/0x50 cleanup_mnt+0x109/0x170 __cleanup_mnt+0x16/0x20 task_work_run+0x65/0xa0 exit_to_user_mode_prepare+0x175/0x190 syscall_exit_to_user_mode+0x25/0x50 do_syscall_64+0x4c/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc During umount(), if cp_error is set, f2fs_wait_on_all_pages() should not stop waiting all F2FS_WB_CP_DATA pages to be writebacked, otherwise, fsync_node_num can be non-zero after f2fs_wait_on_all_pages() causing this bug. In this case, to avoid deadloop in f2fs_wait_on_all_pages(), it needs to drop all dirty pages rather than redirtying them.
CVE-2023-54129 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: octeontx2-af: Add validation for lmac type Upon physical link change, firmware reports to the kernel about the change along with the details like speed, lmac_type_id, etc. Kernel derives lmac_type based on lmac_type_id received from firmware. In a few scenarios, firmware returns an invalid lmac_type_id, which is resulting in below kernel panic. This patch adds the missing validation of the lmac_type_id field. Internal error: Oops: 96000005 [#1] PREEMPT SMP [ 35.321595] Modules linked in: [ 35.328982] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted 5.4.210-g2e3169d8e1bc-dirty #17 [ 35.337014] Hardware name: Marvell CN103XX board (DT) [ 35.344297] Workqueue: events work_for_cpu_fn [ 35.352730] pstate: 40400089 (nZcv daIf +PAN -UAO) [ 35.360267] pc : strncpy+0x10/0x30 [ 35.366595] lr : cgx_link_change_handler+0x90/0x180
CVE-2023-54130 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: hfs/hfsplus: avoid WARN_ON() for sanity check, use proper error handling Commit 55d1cbbbb29e ("hfs/hfsplus: use WARN_ON for sanity check") fixed a build warning by turning a comment into a WARN_ON(), but it turns out that syzbot then complains because it can trigger said warning with a corrupted hfs image. The warning actually does warn about a bad situation, but we are much better off just handling it as the error it is. So rather than warn about us doing bad things, stop doing the bad things and return -EIO. While at it, also fix a memory leak that was introduced by an earlier fix for a similar syzbot warning situation, and add a check for one case that historically wasn't handled at all (ie neither comment nor subsequent WARN_ON).
CVE-2023-54131 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: Fix memory leak when handling surveys When removing a rt2x00 device, its associated channel surveys are not freed, causing a memory leak observable with kmemleak: unreferenced object 0xffff9620f0881a00 (size 512): comm "systemd-udevd", pid 2290, jiffies 4294906974 (age 33.768s) hex dump (first 32 bytes): 70 44 12 00 00 00 00 00 92 8a 00 00 00 00 00 00 pD.............. 00 00 00 00 00 00 00 00 ab 87 01 00 00 00 00 00 ................ backtrace: [<ffffffffb0ed858b>] __kmalloc+0x4b/0x130 [<ffffffffc1b0f29b>] rt2800_probe_hw+0xc2b/0x1380 [rt2800lib] [<ffffffffc1a9496e>] rt2800usb_probe_hw+0xe/0x60 [rt2800usb] [<ffffffffc1ae491a>] rt2x00lib_probe_dev+0x21a/0x7d0 [rt2x00lib] [<ffffffffc1b3b83e>] rt2x00usb_probe+0x1be/0x980 [rt2x00usb] [<ffffffffc05981e2>] usb_probe_interface+0xe2/0x310 [usbcore] [<ffffffffb13be2d5>] really_probe+0x1a5/0x410 [<ffffffffb13be5c8>] __driver_probe_device+0x78/0x180 [<ffffffffb13be6fe>] driver_probe_device+0x1e/0x90 [<ffffffffb13be972>] __driver_attach+0xd2/0x1c0 [<ffffffffb13bbc57>] bus_for_each_dev+0x77/0xd0 [<ffffffffb13bd2a2>] bus_add_driver+0x112/0x210 [<ffffffffb13bfc6c>] driver_register+0x5c/0x120 [<ffffffffc0596ae8>] usb_register_driver+0x88/0x150 [usbcore] [<ffffffffb0c011c4>] do_one_initcall+0x44/0x220 [<ffffffffb0d6134c>] do_init_module+0x4c/0x220 Fix this by freeing the channel surveys on device removal. Tested with a RT3070 based USB wireless adapter.
CVE-2025-68360 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: wed: use proper wed reference in mt76 wed driver callabacks MT7996 driver can use both wed and wed_hif2 devices to offload traffic from/to the wireless NIC. In the current codebase we assume to always use the primary wed device in wed callbacks resulting in the following crash if the hw runs wed_hif2 (e.g. 6GHz link). [ 297.455876] Unable to handle kernel read from unreadable memory at virtual address 000000000000080a [ 297.464928] Mem abort info: [ 297.467722] ESR = 0x0000000096000005 [ 297.471461] EC = 0x25: DABT (current EL), IL = 32 bits [ 297.476766] SET = 0, FnV = 0 [ 297.479809] EA = 0, S1PTW = 0 [ 297.482940] FSC = 0x05: level 1 translation fault [ 297.487809] Data abort info: [ 297.490679] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 297.496156] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 297.501196] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 297.506500] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000107480000 [ 297.512927] [000000000000080a] pgd=08000001097fb003, p4d=08000001097fb003, pud=08000001097fb003, pmd=0000000000000000 [ 297.523532] Internal error: Oops: 0000000096000005 [#1] SMP [ 297.715393] CPU: 2 UID: 0 PID: 45 Comm: kworker/u16:2 Tainted: G O 6.12.50 #0 [ 297.723908] Tainted: [O]=OOT_MODULE [ 297.727384] Hardware name: Banana Pi BPI-R4 (2x SFP+) (DT) [ 297.732857] Workqueue: nf_ft_offload_del nf_flow_rule_route_ipv6 [nf_flow_table] [ 297.740254] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 297.747205] pc : mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.752688] lr : mtk_wed_flow_remove+0x58/0x80 [ 297.757126] sp : ffffffc080fe3ae0 [ 297.760430] x29: ffffffc080fe3ae0 x28: ffffffc080fe3be0 x27: 00000000deadbef7 [ 297.767557] x26: ffffff80c5ebca00 x25: 0000000000000001 x24: ffffff80c85f4c00 [ 297.774683] x23: ffffff80c1875b78 x22: ffffffc080d42cd0 x21: ffffffc080660018 [ 297.781809] x20: ffffff80c6a076d0 x19: ffffff80c6a043c8 x18: 0000000000000000 [ 297.788935] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000000 [ 297.796060] x14: 0000000000000019 x13: ffffff80c0ad8ec0 x12: 00000000fa83b2da [ 297.803185] x11: ffffff80c02700c0 x10: ffffff80c0ad8ec0 x9 : ffffff81fef96200 [ 297.810311] x8 : ffffff80c02700c0 x7 : ffffff80c02700d0 x6 : 0000000000000002 [ 297.817435] x5 : 0000000000000400 x4 : 0000000000000000 x3 : 0000000000000000 [ 297.824561] x2 : 0000000000000001 x1 : 0000000000000800 x0 : ffffff80c6a063c8 [ 297.831686] Call trace: [ 297.834123] mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.839254] mtk_wed_flow_remove+0x58/0x80 [ 297.843342] mtk_flow_offload_cmd+0x434/0x574 [ 297.847689] mtk_wed_setup_tc_block_cb+0x30/0x40 [ 297.852295] nf_flow_offload_ipv6_hook+0x7f4/0x964 [nf_flow_table] [ 297.858466] nf_flow_rule_route_ipv6+0x438/0x4a4 [nf_flow_table] [ 297.864463] process_one_work+0x174/0x300 [ 297.868465] worker_thread+0x278/0x430 [ 297.872204] kthread+0xd8/0xdc [ 297.875251] ret_from_fork+0x10/0x20 [ 297.878820] Code: 928b5ae0 8b000273 91400a60 f943fa61 (79401421) [ 297.884901] ---[ end trace 0000000000000000 ]--- Fix the issue detecting the proper wed reference to use running wed callabacks.
CVE-2025-68368 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: init bioset in mddev_init IO operations may be needed before md_run(), such as updating metadata after writing sysfs. Without bioset, this triggers a NULL pointer dereference as below: BUG: kernel NULL pointer dereference, address: 0000000000000020 Call Trace: md_update_sb+0x658/0xe00 new_level_store+0xc5/0x120 md_attr_store+0xc9/0x1e0 sysfs_kf_write+0x6f/0xa0 kernfs_fop_write_iter+0x141/0x2a0 vfs_write+0x1fc/0x5a0 ksys_write+0x79/0x180 __x64_sys_write+0x1d/0x30 x64_sys_call+0x2818/0x2880 do_syscall_64+0xa9/0x580 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Reproducer ``` mdadm -CR /dev/md0 -l1 -n2 /dev/sd[cd] echo inactive > /sys/block/md0/md/array_state echo 10 > /sys/block/md0/md/new_level ``` mddev_init() can only be called once per mddev, no need to test if bioset has been initialized anymore.
CVE-2025-68370 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: tmc: add the handle of the event to the path The handle is essential for retrieving the AUX_EVENT of each CPU and is required in perf mode. It has been added to the coresight_path so that dependent devices can access it from the path when needed. The existing bug can be reproduced with: perf record -e cs_etm//k -C 0-9 dd if=/dev/zero of=/dev/null Showing an oops as follows: Unable to handle kernel paging request at virtual address 000f6e84934ed19e Call trace: tmc_etr_get_buffer+0x30/0x80 [coresight_tmc] (P) catu_enable_hw+0xbc/0x3d0 [coresight_catu] catu_enable+0x70/0xe0 [coresight_catu] coresight_enable_path+0xb0/0x258 [coresight]
CVE-2025-68371 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Fix device resources accessed after device removal Correct possible race conditions during device removal. Previously, a scheduled work item to reset a LUN could still execute after the device was removed, leading to use-after-free and other resource access issues. This race condition occurs because the abort handler may schedule a LUN reset concurrently with device removal via sdev_destroy(), leading to use-after-free and improper access to freed resources. - Check in the device reset handler if the device is still present in the controller's SCSI device list before running; if not, the reset is skipped. - Cancel any pending TMF work that has not started in sdev_destroy(). - Ensure device freeing in sdev_destroy() is done while holding the LUN reset mutex to avoid races with ongoing resets.
CVE-2025-68373 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: avoid repeated calls to del_gendisk There is a uaf problem which is found by case 23rdev-lifetime: Oops: general protection fault, probably for non-canonical address 0xdead000000000122 RIP: 0010:bdi_unregister+0x4b/0x170 Call Trace: <TASK> __del_gendisk+0x356/0x3e0 mddev_unlock+0x351/0x360 rdev_attr_store+0x217/0x280 kernfs_fop_write_iter+0x14a/0x210 vfs_write+0x29e/0x550 ksys_write+0x74/0xf0 do_syscall_64+0xbb/0x380 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7ff5250a177e The sequence is: 1. rdev remove path gets reconfig_mutex 2. rdev remove path release reconfig_mutex in mddev_unlock 3. md stop calls do_md_stop and sets MD_DELETED 4. rdev remove path calls del_gendisk because MD_DELETED is set 5. md stop path release reconfig_mutex and calls del_gendisk again So there is a race condition we should resolve. This patch adds a flag MD_DO_DELETE to avoid the race condition.
CVE-2025-68375 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86: Fix NULL event access and potential PEBS record loss When intel_pmu_drain_pebs_icl() is called to drain PEBS records, the perf_event_overflow() could be called to process the last PEBS record. While perf_event_overflow() could trigger the interrupt throttle and stop all events of the group, like what the below call-chain shows. perf_event_overflow() -> __perf_event_overflow() ->__perf_event_account_interrupt() -> perf_event_throttle_group() -> perf_event_throttle() -> event->pmu->stop() -> x86_pmu_stop() The side effect of stopping the events is that all corresponding event pointers in cpuc->events[] array are cleared to NULL. Assume there are two PEBS events (event a and event b) in a group. When intel_pmu_drain_pebs_icl() calls perf_event_overflow() to process the last PEBS record of PEBS event a, interrupt throttle is triggered and all pointers of event a and event b are cleared to NULL. Then intel_pmu_drain_pebs_icl() tries to process the last PEBS record of event b and encounters NULL pointer access. To avoid this issue, move cpuc->events[] clearing from x86_pmu_stop() to x86_pmu_del(). It's safe since cpuc->active_mask or cpuc->pebs_enabled is always checked before access the event pointer from cpuc->events[].
CVE-2025-68376 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: ETR: Fix ETR buffer use-after-free issue When ETR is enabled as CS_MODE_SYSFS, if the buffer size is changed and enabled again, currently sysfs_buf will point to the newly allocated memory(buf_new) and free the old memory(buf_old). But the etr_buf that is being used by the ETR remains pointed to buf_old, not updated to buf_new. In this case, it will result in a memory use-after-free issue. Fix this by checking ETR's mode before updating and releasing buf_old, if the mode is CS_MODE_SYSFS, then skip updating and releasing it.
CVE-2022-50714 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix rmmod crash in driver reload test In insmod/rmmod stress test, the following crash dump shows up immediately. The problem is caused by missing mt76_dev in mt7921_pci_remove(). We should make sure the drvdata is ready before probe() finished. [168.862789] ================================================================== [168.862797] BUG: KASAN: user-memory-access in try_to_grab_pending+0x59/0x480 [168.862805] Write of size 8 at addr 0000000000006df0 by task rmmod/5361 [168.862812] CPU: 7 PID: 5361 Comm: rmmod Tainted: G OE 5.19.0-rc6 #1 [168.862816] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, 05/04/2020 [168.862820] Call Trace: [168.862822] <TASK> [168.862825] dump_stack_lvl+0x49/0x63 [168.862832] print_report.cold+0x493/0x6b7 [168.862845] kasan_report+0xa7/0x120 [168.862857] kasan_check_range+0x163/0x200 [168.862861] __kasan_check_write+0x14/0x20 [168.862866] try_to_grab_pending+0x59/0x480 [168.862870] __cancel_work_timer+0xbb/0x340 [168.862898] cancel_work_sync+0x10/0x20 [168.862902] mt7921_pci_remove+0x61/0x1c0 [mt7921e] [168.862909] pci_device_remove+0xa3/0x1d0 [168.862914] device_remove+0xc4/0x170 [168.862920] device_release_driver_internal+0x163/0x300 [168.862925] driver_detach+0xc7/0x1a0 [168.862930] bus_remove_driver+0xeb/0x2d0 [168.862935] driver_unregister+0x71/0xb0 [168.862939] pci_unregister_driver+0x30/0x230 [168.862944] mt7921_pci_driver_exit+0x10/0x1b [mt7921e] [168.862949] __x64_sys_delete_module+0x2f9/0x4b0 [168.862968] do_syscall_64+0x38/0x90 [168.862973] entry_SYSCALL_64_after_hwframe+0x63/0xcd Test steps: 1. insmode 2. do not ifup 3. rmmod quickly (within 1 second)
CVE-2022-50715 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid1: stop mdx_raid1 thread when raid1 array run failed fail run raid1 array when we assemble array with the inactive disk only, but the mdx_raid1 thread were not stop, Even if the associated resources have been released. it will caused a NULL dereference when we do poweroff. This causes the following Oops: [ 287.587787] BUG: kernel NULL pointer dereference, address: 0000000000000070 [ 287.594762] #PF: supervisor read access in kernel mode [ 287.599912] #PF: error_code(0x0000) - not-present page [ 287.605061] PGD 0 P4D 0 [ 287.607612] Oops: 0000 [#1] SMP NOPTI [ 287.611287] CPU: 3 PID: 5265 Comm: md0_raid1 Tainted: G U 5.10.146 #0 [ 287.619029] Hardware name: xxxxxxx/To be filled by O.E.M, BIOS 5.19 06/16/2022 [ 287.626775] RIP: 0010:md_check_recovery+0x57/0x500 [md_mod] [ 287.632357] Code: fe 01 00 00 48 83 bb 10 03 00 00 00 74 08 48 89 ...... [ 287.651118] RSP: 0018:ffffc90000433d78 EFLAGS: 00010202 [ 287.656347] RAX: 0000000000000000 RBX: ffff888105986800 RCX: 0000000000000000 [ 287.663491] RDX: ffffc90000433bb0 RSI: 00000000ffffefff RDI: ffff888105986800 [ 287.670634] RBP: ffffc90000433da0 R08: 0000000000000000 R09: c0000000ffffefff [ 287.677771] R10: 0000000000000001 R11: ffffc90000433ba8 R12: ffff888105986800 [ 287.684907] R13: 0000000000000000 R14: fffffffffffffe00 R15: ffff888100b6b500 [ 287.692052] FS: 0000000000000000(0000) GS:ffff888277f80000(0000) knlGS:0000000000000000 [ 287.700149] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 287.705897] CR2: 0000000000000070 CR3: 000000000320a000 CR4: 0000000000350ee0 [ 287.713033] Call Trace: [ 287.715498] raid1d+0x6c/0xbbb [raid1] [ 287.719256] ? __schedule+0x1ff/0x760 [ 287.722930] ? schedule+0x3b/0xb0 [ 287.726260] ? schedule_timeout+0x1ed/0x290 [ 287.730456] ? __switch_to+0x11f/0x400 [ 287.734219] md_thread+0xe9/0x140 [md_mod] [ 287.738328] ? md_thread+0xe9/0x140 [md_mod] [ 287.742601] ? wait_woken+0x80/0x80 [ 287.746097] ? md_register_thread+0xe0/0xe0 [md_mod] [ 287.751064] kthread+0x11a/0x140 [ 287.754300] ? kthread_park+0x90/0x90 [ 287.757974] ret_from_fork+0x1f/0x30 In fact, when raid1 array run fail, we need to do md_unregister_thread() before raid1_free().
CVE-2022-50720 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/apic: Don't disable x2APIC if locked The APIC supports two modes, legacy APIC (or xAPIC), and Extended APIC (or x2APIC). X2APIC mode is mostly compatible with legacy APIC, but it disables the memory-mapped APIC interface in favor of one that uses MSRs. The APIC mode is controlled by the EXT bit in the APIC MSR. The MMIO/xAPIC interface has some problems, most notably the APIC LEAK [1]. This bug allows an attacker to use the APIC MMIO interface to extract data from the SGX enclave. Introduce support for a new feature that will allow the BIOS to lock the APIC in x2APIC mode. If the APIC is locked in x2APIC mode and the kernel tries to disable the APIC or revert to legacy APIC mode a GP fault will occur. Introduce support for a new MSR (IA32_XAPIC_DISABLE_STATUS) and handle the new locked mode when the LEGACY_XAPIC_DISABLED bit is set by preventing the kernel from trying to disable the x2APIC. On platforms with the IA32_XAPIC_DISABLE_STATUS MSR, if SGX or TDX are enabled the LEGACY_XAPIC_DISABLED will be set by the BIOS. If legacy APIC is required, then it SGX and TDX need to be disabled in the BIOS. [1]: https://aepicleak.com/aepicleak.pdf
CVE-2022-50724 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix resource leak in regulator_register() I got some resource leak reports while doing fault injection test: OF: ERROR: memory leak, expected refcount 1 instead of 100, of_node_get()/of_node_put() unbalanced - destroy cset entry: attach overlay node /i2c/pmic@64/regulators/buck1 unreferenced object 0xffff88810deea000 (size 512): comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s) hex dump (first 32 bytes): 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................ backtrace: [<00000000d78541e2>] kmalloc_trace+0x21/0x110 [<00000000b343d153>] device_private_init+0x32/0xd0 [<00000000be1f0c70>] device_add+0xb2d/0x1030 [<00000000e3e6344d>] regulator_register+0xaf2/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] unreferenced object 0xffff88810b617b80 (size 32): comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s) hex dump (first 32 bytes): 72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S 55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+... backtrace: [<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0 [<0000000025c6a4e5>] kstrdup+0x3a/0x70 [<00000000790efb69>] create_regulator+0xc0/0x4e0 [<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440 [<0000000045796214>] regulator_register+0x10b3/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] After calling regulator_resolve_supply(), the 'rdev->supply' is set by set_supply(), after this set, in the error path, the resources need be released, so call regulator_put() to avoid the leaks.
CVE-2022-50730 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: silence the warning when evicting inode with dioread_nolock When evicting an inode with default dioread_nolock, it could be raced by the unwritten extents converting kworker after writeback some new allocated dirty blocks. It convert unwritten extents to written, the extents could be merged to upper level and free extent blocks, so it could mark the inode dirty again even this inode has been marked I_FREEING. But the inode->i_io_list check and warning in ext4_evict_inode() missing this corner case. Fortunately, ext4_evict_inode() will wait all extents converting finished before this check, so it will not lead to inode use-after-free problem, every thing is OK besides this warning. The WARN_ON_ONCE was originally designed for finding inode use-after-free issues in advance, but if we add current dioread_nolock case in, it will become not quite useful, so fix this warning by just remove this check. ====== WARNING: CPU: 7 PID: 1092 at fs/ext4/inode.c:227 ext4_evict_inode+0x875/0xc60 ... RIP: 0010:ext4_evict_inode+0x875/0xc60 ... Call Trace: <TASK> evict+0x11c/0x2b0 iput+0x236/0x3a0 do_unlinkat+0x1b4/0x490 __x64_sys_unlinkat+0x4c/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7fa933c1115b ====== rm kworker ext4_end_io_end() vfs_unlink() ext4_unlink() ext4_convert_unwritten_io_end_vec() ext4_convert_unwritten_extents() ext4_map_blocks() ext4_ext_map_blocks() ext4_ext_try_to_merge_up() __mark_inode_dirty() check !I_FREEING locked_inode_to_wb_and_lock_list() iput() iput_final() evict() ext4_evict_inode() truncate_inode_pages_final() //wait release io_end inode_io_list_move_locked() ext4_release_io_end() trigger WARN_ON_ONCE()
CVE-2022-50731 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: akcipher - default implementation for setting a private key Changes from v1: * removed the default implementation from set_pub_key: it is assumed that an implementation must always have this callback defined as there are no use case for an algorithm, which doesn't need a public key Many akcipher implementations (like ECDSA) support only signature verifications, so they don't have all callbacks defined. Commit 78a0324f4a53 ("crypto: akcipher - default implementations for request callbacks") introduced default callbacks for sign/verify operations, which just return an error code. However, these are not enough, because before calling sign the caller would likely call set_priv_key first on the instantiated transform (as the in-kernel testmgr does). This function does not have a default stub, so the kernel crashes, when trying to set a private key on an akcipher, which doesn't support signature generation. I've noticed this, when trying to add a KAT vector for ECDSA signature to the testmgr. With this patch the testmgr returns an error in dmesg (as it should) instead of crashing the kernel NULL ptr dereference.
CVE-2022-50735 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: do not run mt76u_status_worker if the device is not running Fix the following NULL pointer dereference avoiding to run mt76u_status_worker thread if the device is not running yet. KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 98 Comm: kworker/u2:2 Not tainted 5.14.0+ #78 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: mt76 mt76u_tx_status_data RIP: 0010:mt76x02_mac_fill_tx_status.isra.0+0x82c/0x9e0 Code: c5 48 b8 00 00 00 00 00 fc ff df 80 3c 02 00 0f 85 94 01 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8b 34 24 4c 89 f2 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 89 01 00 00 41 8b 16 41 0f b7 RSP: 0018:ffffc900005af988 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffc900005afae8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff832fc661 RDI: ffffc900005afc2a RBP: ffffc900005afae0 R08: 0000000000000001 R09: fffff520000b5f3c R10: 0000000000000003 R11: fffff520000b5f3b R12: ffff88810b6132d8 R13: 000000000000ffff R14: 0000000000000000 R15: ffffc900005afc28 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa0eda6a000 CR3: 0000000118f17000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: mt76x02_send_tx_status+0x1d2/0xeb0 mt76x02_tx_status_data+0x8e/0xd0 mt76u_tx_status_data+0xe1/0x240 process_one_work+0x92b/0x1460 worker_thread+0x95/0xe00 kthread+0x3a1/0x480 ret_from_fork+0x1f/0x30 Modules linked in: --[ end trace 8df5d20fc5040f65 ]-- RIP: 0010:mt76x02_mac_fill_tx_status.isra.0+0x82c/0x9e0 Code: c5 48 b8 00 00 00 00 00 fc ff df 80 3c 02 00 0f 85 94 01 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8b 34 24 4c 89 f2 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 89 01 00 00 41 8b 16 41 0f b7 RSP: 0018:ffffc900005af988 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffc900005afae8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff832fc661 RDI: ffffc900005afc2a RBP: ffffc900005afae0 R08: 0000000000000001 R09: fffff520000b5f3c R10: 0000000000000003 R11: fffff520000b5f3b R12: ffff88810b6132d8 R13: 000000000000ffff R14: 0000000000000000 R15: ffffc900005afc28 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa0eda6a000 CR3: 0000000118f17000 CR4: 0000000000750ef0 PKRU: 55555554 Moreover move stat_work schedule out of the for loop.
CVE-2022-50738 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vhost-vdpa: fix an iotlb memory leak Before commit 3d5698793897 ("vhost-vdpa: introduce asid based IOTLB") we called vhost_vdpa_iotlb_unmap(v, iotlb, 0ULL, 0ULL - 1) during release to free all the resources allocated when processing user IOTLB messages through vhost_vdpa_process_iotlb_update(). That commit changed the handling of IOTLB a bit, and we accidentally removed some code called during the release. We partially fixed this with commit 037d4305569a ("vhost-vdpa: call vhost_vdpa_cleanup during the release") but a potential memory leak is still there as showed by kmemleak if the application does not send VHOST_IOTLB_INVALIDATE or crashes: unreferenced object 0xffff888007fbaa30 (size 16): comm "blkio-bench", pid 914, jiffies 4294993521 (age 885.500s) hex dump (first 16 bytes): 40 73 41 07 80 88 ff ff 00 00 00 00 00 00 00 00 @sA............. backtrace: [<0000000087736d2a>] kmem_cache_alloc_trace+0x142/0x1c0 [<0000000060740f50>] vhost_vdpa_process_iotlb_msg+0x68c/0x901 [vhost_vdpa] [<0000000083e8e205>] vhost_chr_write_iter+0xc0/0x4a0 [vhost] [<000000008f2f414a>] vhost_vdpa_chr_write_iter+0x18/0x20 [vhost_vdpa] [<00000000de1cd4a0>] vfs_write+0x216/0x4b0 [<00000000a2850200>] ksys_write+0x71/0xf0 [<00000000de8e720b>] __x64_sys_write+0x19/0x20 [<0000000018b12cbb>] do_syscall_64+0x3f/0x90 [<00000000986ec465>] entry_SYSCALL_64_after_hwframe+0x63/0xcd Let's fix this calling vhost_vdpa_iotlb_unmap() on the whole range in vhost_vdpa_remove_as(). We move that call before vhost_dev_cleanup() since we need a valid v->vdev.mm in vhost_vdpa_pa_unmap(). vhost_iotlb_reset() call can be removed, since vhost_vdpa_iotlb_unmap() on the whole range removes all the entries. The kmemleak log reported was observed with a vDPA device that has `use_va` set to true (e.g. VDUSE). This patch has been tested with both types of devices.