Search Results (334227 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23161 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix race of truncate and swap entry split The helper for shmem swap freeing is not handling the order of swap entries correctly. It uses xa_cmpxchg_irq to erase the swap entry, but it gets the entry order before that using xa_get_order without lock protection, and it may get an outdated order value if the entry is split or changed in other ways after the xa_get_order and before the xa_cmpxchg_irq. And besides, the order could grow and be larger than expected, and cause truncation to erase data beyond the end border. For example, if the target entry and following entries are swapped in or freed, then a large folio was added in place and swapped out, using the same entry, the xa_cmpxchg_irq will still succeed, it's very unlikely to happen though. To fix that, open code the Xarray cmpxchg and put the order retrieval and value checking in the same critical section. Also, ensure the order won't exceed the end border, skip it if the entry goes across the border. Skipping large swap entries crosses the end border is safe here. Shmem truncate iterates the range twice, in the first iteration, find_lock_entries already filtered such entries, and shmem will swapin the entries that cross the end border and partially truncate the folio (split the folio or at least zero part of it). So in the second loop here, if we see a swap entry that crosses the end order, it must at least have its content erased already. I observed random swapoff hangs and kernel panics when stress testing ZSWAP with shmem. After applying this patch, all problems are gone.
CVE-2026-23164 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: rocker: fix memory leak in rocker_world_port_post_fini() In rocker_world_port_pre_init(), rocker_port->wpriv is allocated with kzalloc(wops->port_priv_size, GFP_KERNEL). However, in rocker_world_port_post_fini(), the memory is only freed when wops->port_post_fini callback is set: if (!wops->port_post_fini) return; wops->port_post_fini(rocker_port); kfree(rocker_port->wpriv); Since rocker_ofdpa_ops does not implement port_post_fini callback (it is NULL), the wpriv memory allocated for each port is never freed when ports are removed. This leads to a memory leak of sizeof(struct ofdpa_port) bytes per port on every device removal. Fix this by always calling kfree(rocker_port->wpriv) regardless of whether the port_post_fini callback exists.
CVE-2026-23168 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: flex_proportions: make fprop_new_period() hardirq safe Bernd has reported a lockdep splat from flexible proportions code that is essentially complaining about the following race: <timer fires> run_timer_softirq - we are in softirq context call_timer_fn writeout_period fprop_new_period write_seqcount_begin(&p->sequence); <hardirq is raised> ... blk_mq_end_request() blk_update_request() ext4_end_bio() folio_end_writeback() __wb_writeout_add() __fprop_add_percpu_max() if (unlikely(max_frac < FPROP_FRAC_BASE)) { fprop_fraction_percpu() seq = read_seqcount_begin(&p->sequence); - sees odd sequence so loops indefinitely Note that a deadlock like this is only possible if the bdi has configured maximum fraction of writeout throughput which is very rare in general but frequent for example for FUSE bdis. To fix this problem we have to make sure write section of the sequence counter is irqsafe.
CVE-2026-1844 2 Pixelyoursite, Wordpress 2 Pixelyoursite Pro – Your Smart Pixel (tag) Manager, Wordpress 2026-02-18 7.2 High
The PixelYourSite PRO plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'pysTrafficSource' parameter and the 'pys_landing_page' parameter in all versions up to, and including, 12.4.0.2 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2026-1904 2 Nayon46, Wordpress 2 Simple Wp Colorfull Accordion, Wordpress 2026-02-18 6.4 Medium
The Simple Wp colorfull Accordion plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'title' parameter in the 'accordion' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-15483 2 Ajferg, Wordpress 2 Link Hopper, Wordpress 2026-02-18 4.4 Medium
The Link Hopper plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘hop_name’ parameter in all versions up to, and including, 2.5 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled.
CVE-2026-1795 2 Sivenso, Wordpress 2 Address Bar Ads, Wordpress 2026-02-18 6.1 Medium
The Address Bar Ads plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the URL Path in all versions up to, and including, 1.0.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link.
CVE-2026-2312 2 Maxfoundry, Wordpress 2 Media Library Folders, Wordpress 2026-02-18 4.3 Medium
The Media Library Folders plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 8.3.6 via the delete_maxgalleria_media() and maxgalleria_rename_image() functions due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with Author-level access and above, to delete or rename attachments owned by other users (including administrators). The rename flow also deletes all postmeta for the target attachment, causing data loss.
CVE-2026-23114 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64/fpsimd: ptrace: Fix SVE writes on !SME systems When SVE is supported but SME is not supported, a ptrace write to the NT_ARM_SVE regset can place the tracee into an invalid state where (non-streaming) SVE register data is stored in FP_STATE_SVE format but TIF_SVE is clear. This can result in a later warning from fpsimd_restore_current_state(), e.g. WARNING: CPU: 0 PID: 7214 at arch/arm64/kernel/fpsimd.c:383 fpsimd_restore_current_state+0x50c/0x748 When this happens, fpsimd_restore_current_state() will set TIF_SVE, placing the task into the correct state. This occurs before any other check of TIF_SVE can possibly occur, as other checks of TIF_SVE only happen while the FPSIMD/SVE/SME state is live. Thus, aside from the warning, there is no functional issue. This bug was introduced during rework to error handling in commit: 9f8bf718f2923 ("arm64/fpsimd: ptrace: Gracefully handle errors") ... where the setting of TIF_SVE was moved into a block which is only executed when system_supports_sme() is true. Fix this by removing the system_supports_sme() check. This ensures that TIF_SVE is set for (SVE-formatted) writes to NT_ARM_SVE, at the cost of unconditionally manipulating the tracee's saved svcr value. The manipulation of svcr is benign and inexpensive, and we already do similar elsewhere (e.g. during signal handling), so I don't think it's worth guarding this with system_supports_sme() checks. Aside from the above, there is no functional change. The 'type' argument to sve_set_common() is only set to ARM64_VEC_SME (in ssve_set())) when system_supports_sme(), so the ARM64_VEC_SME case in the switch statement is still unreachable when !system_supports_sme(). When CONFIG_ARM64_SME=n, the only caller of sve_set_common() is sve_set(), and the compiler can constant-fold for the case where type is ARM64_VEC_SVE, removing the logic for other cases.
CVE-2026-23117 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: add missing ice_deinit_hw() in devlink reinit path devlink-reload results in ice_init_hw failed error, and then removing the ice driver causes a NULL pointer dereference. [ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16 ... [ +0.000001] Call Trace: [ +0.000003] <TASK> [ +0.000006] ice_unload+0x8f/0x100 [ice] [ +0.000081] ice_remove+0xba/0x300 [ice] Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but ice_devlink_reinit_up() still calls ice_init_hw(). Since the control queues are not uninitialized, ice_init_hw() fails with -EBUSY. Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with ice_init_hw() in ice_devlink_reinit_up().
CVE-2026-23118 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix data-race warning and potential load/store tearing Fix the following: BUG: KCSAN: data-race in rxrpc_peer_keepalive_worker / rxrpc_send_data_packet which is reporting an issue with the reads and writes to ->last_tx_at in: conn->peer->last_tx_at = ktime_get_seconds(); and: keepalive_at = peer->last_tx_at + RXRPC_KEEPALIVE_TIME; The lockless accesses to these to values aren't actually a problem as the read only needs an approximate time of last transmission for the purposes of deciding whether or not the transmission of a keepalive packet is warranted yet. Also, as ->last_tx_at is a 64-bit value, tearing can occur on a 32-bit arch. Fix both of these by switching to an unsigned int for ->last_tx_at and only storing the LSW of the time64_t. It can then be reconstructed at need provided no more than 68 years has elapsed since the last transmission.
CVE-2026-23119 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: provide a net pointer to __skb_flow_dissect() After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect") we have to provide a net pointer to __skb_flow_dissect(), either via skb->dev, skb->sk, or a user provided pointer. In the following case, syzbot was able to cook a bare skb. WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053 Call Trace: <TASK> bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline] __bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157 bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline] bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline] bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515 xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388 bpf_prog_run_xdp include/net/xdp.h:700 [inline] bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421 bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390 bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703 __sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182 __do_sys_bpf kernel/bpf/syscall.c:6274 [inline] __se_sys_bpf kernel/bpf/syscall.c:6272 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
CVE-2026-23121 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mISDN: annotate data-race around dev->work dev->work can re read locklessly in mISDN_read() and mISDN_poll(). Add READ_ONCE()/WRITE_ONCE() annotations. BUG: KCSAN: data-race in mISDN_ioctl / mISDN_read write to 0xffff88812d848280 of 4 bytes by task 10864 on cpu 1: misdn_add_timer drivers/isdn/mISDN/timerdev.c:175 [inline] mISDN_ioctl+0x2fb/0x550 drivers/isdn/mISDN/timerdev.c:233 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xce/0x140 fs/ioctl.c:583 __x64_sys_ioctl+0x43/0x50 fs/ioctl.c:583 x64_sys_call+0x14b0/0x3000 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f read to 0xffff88812d848280 of 4 bytes by task 10857 on cpu 0: mISDN_read+0x1f2/0x470 drivers/isdn/mISDN/timerdev.c:112 do_loop_readv_writev fs/read_write.c:847 [inline] vfs_readv+0x3fb/0x690 fs/read_write.c:1020 do_readv+0xe7/0x210 fs/read_write.c:1080 __do_sys_readv fs/read_write.c:1165 [inline] __se_sys_readv fs/read_write.c:1162 [inline] __x64_sys_readv+0x45/0x50 fs/read_write.c:1162 x64_sys_call+0x2831/0x3000 arch/x86/include/generated/asm/syscalls_64.h:20 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f value changed: 0x00000000 -> 0x00000001
CVE-2026-23122 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: igc: Reduce TSN TX packet buffer from 7KB to 5KB per queue The previous 7 KB per queue caused TX unit hangs under heavy timestamping load. Reducing to 5 KB avoids these hangs and matches the TSN recommendation in I225/I226 SW User Manual Section 7.5.4. The 8 KB "freed" by this change is currently unused. This reduction is not expected to impact throughput, as the i226 is PCIe-limited for small TSN packets rather than TX-buffer-limited.
CVE-2026-23123 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: interconnect: debugfs: initialize src_node and dst_node to empty strings The debugfs_create_str() API assumes that the string pointer is either NULL or points to valid kmalloc() memory. Leaving the pointer uninitialized can cause problems. Initialize src_node and dst_node to empty strings before creating the debugfs entries to guarantee that reads and writes are safe.
CVE-2026-23124 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: annotate data-race in ndisc_router_discovery() syzbot found that ndisc_router_discovery() could read and write in6_dev->ra_mtu without holding a lock [1] This looks fine, IFLA_INET6_RA_MTU is best effort. Add READ_ONCE()/WRITE_ONCE() to document the race. Note that we might also reject illegal MTU values (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) in a future patch. [1] BUG: KCSAN: data-race in ndisc_router_discovery / ndisc_router_discovery read to 0xffff888119809c20 of 4 bytes by task 25817 on cpu 1: ndisc_router_discovery+0x151d/0x1c90 net/ipv6/ndisc.c:1558 ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841 icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989 ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438 ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500 ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79 ... write to 0xffff888119809c20 of 4 bytes by task 25816 on cpu 0: ndisc_router_discovery+0x155a/0x1c90 net/ipv6/ndisc.c:1559 ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841 icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989 ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438 ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500 ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79 ... value changed: 0x00000000 -> 0xe5400659
CVE-2026-23128 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: arm64: Set __nocfi on swsusp_arch_resume() A DABT is reported[1] on an android based system when resume from hiberate. This happens because swsusp_arch_suspend_exit() is marked with SYM_CODE_*() and does not have a CFI hash, but swsusp_arch_resume() will attempt to verify the CFI hash when calling a copy of swsusp_arch_suspend_exit(). Given that there's an existing requirement that the entrypoint to swsusp_arch_suspend_exit() is the first byte of the .hibernate_exit.text section, we cannot fix this by marking swsusp_arch_suspend_exit() with SYM_FUNC_*(). The simplest fix for now is to disable the CFI check in swsusp_arch_resume(). Mark swsusp_arch_resume() as __nocfi to disable the CFI check. [1] [ 22.991934][ T1] Unable to handle kernel paging request at virtual address 0000000109170ffc [ 22.991934][ T1] Mem abort info: [ 22.991934][ T1] ESR = 0x0000000096000007 [ 22.991934][ T1] EC = 0x25: DABT (current EL), IL = 32 bits [ 22.991934][ T1] SET = 0, FnV = 0 [ 22.991934][ T1] EA = 0, S1PTW = 0 [ 22.991934][ T1] FSC = 0x07: level 3 translation fault [ 22.991934][ T1] Data abort info: [ 22.991934][ T1] ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000 [ 22.991934][ T1] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 22.991934][ T1] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 22.991934][ T1] [0000000109170ffc] user address but active_mm is swapper [ 22.991934][ T1] Internal error: Oops: 0000000096000007 [#1] PREEMPT SMP [ 22.991934][ T1] Dumping ftrace buffer: [ 22.991934][ T1] (ftrace buffer empty) [ 22.991934][ T1] Modules linked in: [ 22.991934][ T1] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.6.98-android15-8-g0b1d2aee7fc3-dirty-4k #1 688c7060a825a3ac418fe53881730b355915a419 [ 22.991934][ T1] Hardware name: Unisoc UMS9360-base Board (DT) [ 22.991934][ T1] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 22.991934][ T1] pc : swsusp_arch_resume+0x2ac/0x344 [ 22.991934][ T1] lr : swsusp_arch_resume+0x294/0x344 [ 22.991934][ T1] sp : ffffffc08006b960 [ 22.991934][ T1] x29: ffffffc08006b9c0 x28: 0000000000000000 x27: 0000000000000000 [ 22.991934][ T1] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000820 [ 22.991934][ T1] x23: ffffffd0817e3000 x22: ffffffd0817e3000 x21: 0000000000000000 [ 22.991934][ T1] x20: ffffff8089171000 x19: ffffffd08252c8c8 x18: ffffffc080061058 [ 22.991934][ T1] x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 0000000000000004 [ 22.991934][ T1] x14: ffffff8178c88000 x13: 0000000000000006 x12: 0000000000000000 [ 22.991934][ T1] x11: 0000000000000015 x10: 0000000000000001 x9 : ffffffd082533000 [ 22.991934][ T1] x8 : 0000000109171000 x7 : 205b5d3433393139 x6 : 392e32322020205b [ 22.991934][ T1] x5 : 000000010916f000 x4 : 000000008164b000 x3 : ffffff808a4e0530 [ 22.991934][ T1] x2 : ffffffd08058e784 x1 : 0000000082326000 x0 : 000000010a283000 [ 22.991934][ T1] Call trace: [ 22.991934][ T1] swsusp_arch_resume+0x2ac/0x344 [ 22.991934][ T1] hibernation_restore+0x158/0x18c [ 22.991934][ T1] load_image_and_restore+0xb0/0xec [ 22.991934][ T1] software_resume+0xf4/0x19c [ 22.991934][ T1] software_resume_initcall+0x34/0x78 [ 22.991934][ T1] do_one_initcall+0xe8/0x370 [ 22.991934][ T1] do_initcall_level+0xc8/0x19c [ 22.991934][ T1] do_initcalls+0x70/0xc0 [ 22.991934][ T1] do_basic_setup+0x1c/0x28 [ 22.991934][ T1] kernel_init_freeable+0xe0/0x148 [ 22.991934][ T1] kernel_init+0x20/0x1a8 [ 22.991934][ T1] ret_from_fork+0x10/0x20 [ 22.991934][ T1] Code: a9400a61 f94013e0 f9438923 f9400a64 (b85fc110) [catalin.marinas@arm.com: commit log updated by Mark Rutland]
CVE-2026-23129 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dpll: Prevent duplicate registrations Modify the internal registration helpers dpll_xa_ref_{dpll,pin}_add() to reject duplicate registration attempts. Previously, if a caller attempted to register the same pin multiple times (with the same ops, priv, and cookie) on the same device, the core silently increments the reference count and return success. This behavior is incorrect because if the caller makes these duplicate registrations then for the first one dpll_pin_registration is allocated and for others the associated dpll_pin_ref.refcount is incremented. During the first unregistration the associated dpll_pin_registration is freed and for others WARN is fired. Fix this by updating the logic to return `-EEXIST` if a matching registration is found to enforce a strict "register once" policy.
CVE-2026-23134 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: slab: fix kmalloc_nolock() context check for PREEMPT_RT On PREEMPT_RT kernels, local_lock becomes a sleeping lock. The current check in kmalloc_nolock() only verifies we're not in NMI or hard IRQ context, but misses the case where preemption is disabled. When a BPF program runs from a tracepoint with preemption disabled (preempt_count > 0), kmalloc_nolock() proceeds to call local_lock_irqsave() which attempts to acquire a sleeping lock, triggering: BUG: sleeping function called from invalid context in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 6128 preempt_count: 2, expected: 0 Fix this by checking !preemptible() on PREEMPT_RT, which directly expresses the constraint that we cannot take a sleeping lock when preemption is disabled. This encompasses the previous checks for NMI and hard IRQ contexts while also catching cases where preemption is disabled.
CVE-2026-23130 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix dead lock while flushing management frames Commit [1] converted the management transmission work item into a wiphy work. Since a wiphy work can only run under wiphy lock protection, a race condition happens in below scenario: 1. a management frame is queued for transmission. 2. ath12k_mac_op_flush() gets called to flush pending frames associated with the hardware (i.e, vif being NULL). Then in ath12k_mac_flush() the process waits for the transmission done. 3. Since wiphy lock has been taken by the flush process, the transmission work item has no chance to run, hence the dead lock. >From user view, this dead lock results in below issue: wlp8s0: authenticate with xxxxxx (local address=xxxxxx) wlp8s0: send auth to xxxxxx (try 1/3) wlp8s0: authenticate with xxxxxx (local address=xxxxxx) wlp8s0: send auth to xxxxxx (try 1/3) wlp8s0: authenticated wlp8s0: associate with xxxxxx (try 1/3) wlp8s0: aborting association with xxxxxx by local choice (Reason: 3=DEAUTH_LEAVING) ath12k_pci 0000:08:00.0: failed to flush mgmt transmit queue, mgmt pkts pending 1 The dead lock can be avoided by invoking wiphy_work_flush() to proactively run the queued work item. Note actually it is already present in ath12k_mac_op_flush(), however it does not protect the case where vif being NULL. Hence move it ahead to cover this case as well. Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00302-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1.115823.3