| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot
Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was
initially created with a guest_memfd binding, as KVM doesn't support
toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling
KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag.
Failure to reject the new memslot results in a use-after-free due to KVM
not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY
change is easy enough, and can/will be done as a hardening measure (in
anticipation of KVM supporting dirty logging on guest_memfd at some point),
but fixing the use-after-free would only address the immediate symptom.
==================================================================
BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm]
Write of size 8 at addr ffff8881111ae908 by task repro/745
CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x60
print_report+0xcb/0x5c0
kasan_report+0xb4/0xe0
kvm_gmem_release+0x362/0x400 [kvm]
__fput+0x2fa/0x9d0
task_work_run+0x12c/0x200
do_exit+0x6ae/0x2100
do_group_exit+0xa8/0x230
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0x737/0x740
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f581f2eac31
</TASK>
Allocated by task 745 on cpu 6 at 9.746971s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_kmalloc+0x77/0x90
kvm_set_memory_region.part.0+0x652/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 745 on cpu 6 at 9.747467s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x3b/0x60
kfree+0xf5/0x440
kvm_set_memslot+0x3c2/0x1160 [kvm]
kvm_set_memory_region.part.0+0x86a/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
svcrdma: use rc_pageoff for memcpy byte offset
svc_rdma_copy_inline_range added rc_curpage (page index) to the page
base instead of the byte offset rc_pageoff. Use rc_pageoff so copies
land within the current page.
Found by ZeroPath (https://zeropath.com) |
| In the Linux kernel, the following vulnerability has been resolved:
Input: alps - fix use-after-free bugs caused by dev3_register_work
The dev3_register_work delayed work item is initialized within
alps_reconnect() and scheduled upon receipt of the first bare
PS/2 packet from an external PS/2 device connected to the ALPS
touchpad. During device detachment, the original implementation
calls flush_workqueue() in psmouse_disconnect() to ensure
completion of dev3_register_work. However, the flush_workqueue()
in psmouse_disconnect() only blocks and waits for work items that
were already queued to the workqueue prior to its invocation. Any
work items submitted after flush_workqueue() is called are not
included in the set of tasks that the flush operation awaits.
This means that after flush_workqueue() has finished executing,
the dev3_register_work could still be scheduled. Although the
psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(),
the scheduling of dev3_register_work remains unaffected.
The race condition can occur as follows:
CPU 0 (cleanup path) | CPU 1 (delayed work)
psmouse_disconnect() |
psmouse_set_state() |
flush_workqueue() | alps_report_bare_ps2_packet()
alps_disconnect() | psmouse_queue_work()
kfree(priv); // FREE | alps_register_bare_ps2_mouse()
| priv = container_of(work...); // USE
| priv->dev3 // USE
Add disable_delayed_work_sync() in alps_disconnect() to ensure
that dev3_register_work is properly canceled and prevented from
executing after the alps_data structure has been deallocated.
This bug is identified by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix deadlock when reading partition table
When one process(such as udev) opens ublk block device (e.g., to read
the partition table via bdev_open()), a deadlock[1] can occur:
1. bdev_open() grabs disk->open_mutex
2. The process issues read I/O to ublk backend to read partition table
3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request()
runs bio->bi_end_io() callbacks
4. If this triggers fput() on file descriptor of ublk block device, the
work may be deferred to current task's task work (see fput() implementation)
5. This eventually calls blkdev_release() from the same context
6. blkdev_release() tries to grab disk->open_mutex again
7. Deadlock: same task waiting for a mutex it already holds
The fix is to run blk_update_request() and blk_mq_end_request() with bottom
halves disabled. This forces blkdev_release() to run in kernel work-queue
context instead of current task work context, and allows ublk server to make
forward progress, and avoids the deadlock.
[axboe: rewrite comment in ublk] |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs: set dummy blocksize to read boot_block when mounting
When mounting, sb->s_blocksize is used to read the boot_block without
being defined or validated. Set a dummy blocksize before attempting to
read the boot_block.
The issue can be triggered with the following syz reproducer:
mkdirat(0xffffffffffffff9c, &(0x7f0000000080)='./file1\x00', 0x0)
r4 = openat$nullb(0xffffffffffffff9c, &(0x7f0000000040), 0x121403, 0x0)
ioctl$FS_IOC_SETFLAGS(r4, 0x40081271, &(0x7f0000000980)=0x4000)
mount(&(0x7f0000000140)=@nullb, &(0x7f0000000040)='./cgroup\x00',
&(0x7f0000000000)='ntfs3\x00', 0x2208004, 0x0)
syz_clone(0x88200200, 0x0, 0x0, 0x0, 0x0, 0x0)
Here, the ioctl sets the bdev block size to 16384. During mount,
get_tree_bdev_flags() calls sb_set_blocksize(sb, block_size(bdev)),
but since block_size(bdev) > PAGE_SIZE, sb_set_blocksize() leaves
sb->s_blocksize at zero.
Later, ntfs_init_from_boot() attempts to read the boot_block while
sb->s_blocksize is still zero, which triggers the bug.
[almaz.alexandrovich@paragon-software.com: changed comment style, added
return value handling] |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: clean up user copy references on ublk server exit
If a ublk server process releases a ublk char device file, any requests
dispatched to the ublk server but not yet completed will retain a ref
value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify
aborting ublk request"), __ublk_fail_req() would decrement the reference
count before completing the failed request. However, that commit
optimized __ublk_fail_req() to call __ublk_complete_rq() directly
without decrementing the request reference count.
The leaked reference count incorrectly allows user copy and zero copy
operations on the completed ublk request. It also triggers the
WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit()
and ublk_deinit_queue().
Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk
char dev is closed") already fixed the issue for ublk devices using
UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference
count leak also affects UBLK_F_USER_COPY, the other reference-counted
data copy mode. Fix the condition in ublk_check_and_reset_active_ref()
to include all reference-counted data copy modes. This ensures that any
ublk requests still owned by the ublk server when it exits have their
reference counts reset to 0. |
| In the Linux kernel, the following vulnerability has been resolved:
shmem: fix recovery on rename failures
maple_tree insertions can fail if we are seriously short on memory;
simple_offset_rename() does not recover well if it runs into that.
The same goes for simple_offset_rename_exchange().
Moreover, shmem_whiteout() expects that if it succeeds, the caller will
progress to d_move(), i.e. that shmem_rename2() won't fail past the
successful call of shmem_whiteout().
Not hard to fix, fortunately - mtree_store() can't fail if the index we
are trying to store into is already present in the tree as a singleton.
For simple_offset_rename_exchange() that's enough - we just need to be
careful about the order of operations.
For simple_offset_rename() solution is to preinsert the target into the
tree for new_dir; the rest can be done without any potentially failing
operations.
That preinsertion has to be done in shmem_rename2() rather than in
simple_offset_rename() itself - otherwise we'd need to deal with the
possibility of failure after successful shmem_whiteout(). |
| In the Linux kernel, the following vulnerability has been resolved:
Input: lkkbd - disable pending work before freeing device
lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work
handler lkkbd_reinit() dereferences the lkkbd structure and its
serio/input_dev fields.
lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd
structure without preventing the reinit work from being queued again
until serio_close() returns. This can allow the work handler to run
after the structure has been freed, leading to a potential use-after-free.
Use disable_work_sync() instead of cancel_work_sync() to ensure the
reinit work cannot be re-queued, and call it both in lkkbd_disconnect()
and in lkkbd_connect() error paths after serio_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
functionfs: fix the open/removal races
ffs_epfile_open() can race with removal, ending up with file->private_data
pointing to freed object.
There is a total count of opened files on functionfs (both ep0 and
dynamic ones) and when it hits zero, dynamic files get removed.
Unfortunately, that removal can happen while another thread is
in ffs_epfile_open(), but has not incremented the count yet.
In that case open will succeed, leaving us with UAF on any subsequent
read() or write().
The root cause is that ffs->opened is misused; atomic_dec_and_test() vs.
atomic_add_return() is not a good idea, when object remains visible all
along.
To untangle that
* serialize openers on ffs->mutex (both for ep0 and for dynamic files)
* have dynamic ones use atomic_inc_not_zero() and fail if we had
zero ->opened; in that case the file we are opening is doomed.
* have the inodes of dynamic files marked on removal (from the
callback of simple_recursive_removal()) - clear ->i_private there.
* have open of dynamic ones verify they hadn't been already removed,
along with checking that state is FFS_ACTIVE. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT
On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the
current task can be preempted. Another task running on the same CPU
may then execute rt6_make_pcpu_route() and successfully install a
pcpu_rt entry. When the first task resumes execution, its cmpxchg()
in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer
NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding
mdelay() after rt6_get_pcpu_route().
Using preempt_disable/enable is not appropriate here because
ip6_rt_pcpu_alloc() may sleep.
Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT:
free our allocation and return the existing pcpu_rt installed by
another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT
kernels where such races should not occur. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: disable SVA when CONFIG_X86 is set
Patch series "Fix stale IOTLB entries for kernel address space", v7.
This proposes a fix for a security vulnerability related to IOMMU Shared
Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel
page table entries. When a kernel page table page is freed and
reallocated for another purpose, the IOMMU might still hold stale,
incorrect entries. This can be exploited to cause a use-after-free or
write-after-free condition, potentially leading to privilege escalation or
data corruption.
This solution introduces a deferred freeing mechanism for kernel page
table pages, which provides a safe window to notify the IOMMU to
invalidate its caches before the page is reused.
This patch (of 8):
In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware
shares and walks the CPU's page tables. The x86 architecture maps the
kernel's virtual address space into the upper portion of every process's
page table. Consequently, in an SVA context, the IOMMU hardware can walk
and cache kernel page table entries.
The Linux kernel currently lacks a notification mechanism for kernel page
table changes, specifically when page table pages are freed and reused.
The IOMMU driver is only notified of changes to user virtual address
mappings. This can cause the IOMMU's internal caches to retain stale
entries for kernel VA.
Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when
kernel page table pages are freed and later reallocated. The IOMMU could
misinterpret the new data as valid page table entries. The IOMMU might
then walk into attacker-controlled memory, leading to arbitrary physical
memory DMA access or privilege escalation. This is also a
Write-After-Free issue, as the IOMMU will potentially continue to write
Accessed and Dirty bits to the freed memory while attempting to walk the
stale page tables.
Currently, SVA contexts are unprivileged and cannot access kernel
mappings. However, the IOMMU will still walk kernel-only page tables all
the way down to the leaf entries, where it realizes the mapping is for the
kernel and errors out. This means the IOMMU still caches these
intermediate page table entries, making the described vulnerability a real
concern.
Disable SVA on x86 architecture until the IOMMU can receive notification
to flush the paging cache before freeing the CPU kernel page table pages. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg()
nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites
fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if
the client already has a SHARE_ACCESS_READ open from a previous OPEN
operation, this action overwrites the existing pointer without
releasing its reference, orphaning the previous reference.
Additionally, the function originally stored the same nfsd_file
pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with
only a single reference. When put_deleg_file() runs, it clears
fi_rdeleg_file and calls nfs4_file_put_access() to release the file.
However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when
the fi_access[O_RDONLY] counter drops to zero. If another READ open
exists on the file, the counter remains elevated and the nfsd_file
reference from the delegation is never released. This potentially
causes open conflicts on that file.
Then, on server shutdown, these leaks cause __nfsd_file_cache_purge()
to encounter files with an elevated reference count that cannot be
cleaned up, ultimately triggering a BUG() in kmem_cache_destroy()
because there are still nfsd_file objects allocated in that cache. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats()
Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters
update") added three new counters and placed them after
BNXT_RE_OUT_OF_SEQ_ERR.
BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware
statistics with different num_counters values on chip_gen_p5_p7 devices.
As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating
hw_stats, which leads to an out-of-bounds write in
bnxt_re_copy_err_stats().
The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and
BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not
only p5/p7 devices.
Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they
are included in the generic counter set. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: fix the crash issue for zero copy XDP_TX action
There is a crash issue when running zero copy XDP_TX action, the crash
log is shown below.
[ 216.122464] Unable to handle kernel paging request at virtual address fffeffff80000000
[ 216.187524] Internal error: Oops: 0000000096000144 [#1] SMP
[ 216.301694] Call trace:
[ 216.304130] dcache_clean_poc+0x20/0x38 (P)
[ 216.308308] __dma_sync_single_for_device+0x1bc/0x1e0
[ 216.313351] stmmac_xdp_xmit_xdpf+0x354/0x400
[ 216.317701] __stmmac_xdp_run_prog+0x164/0x368
[ 216.322139] stmmac_napi_poll_rxtx+0xba8/0xf00
[ 216.326576] __napi_poll+0x40/0x218
[ 216.408054] Kernel panic - not syncing: Oops: Fatal exception in interrupt
For XDP_TX action, the xdp_buff is converted to xdp_frame by
xdp_convert_buff_to_frame(). The memory type of the resulting xdp_frame
depends on the memory type of the xdp_buff. For page pool based xdp_buff
it produces xdp_frame with memory type MEM_TYPE_PAGE_POOL. For zero copy
XSK pool based xdp_buff it produces xdp_frame with memory type
MEM_TYPE_PAGE_ORDER0. However, stmmac_xdp_xmit_back() does not check the
memory type and always uses the page pool type, this leads to invalid
mappings and causes the crash. Therefore, check the xdp_buff memory type
in stmmac_xdp_xmit_back() to fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl()
In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping
metrics_lock. Since this lock protects the lifetime of oa_config, an
attacker could guess the id and call xe_oa_remove_config_ioctl() with
perfect timing, freeing oa_config before we dereference it, leading to
a potential use-after-free.
Fix this by caching the id in a local variable while holding the lock.
v2: (Matt A)
- Dropped mutex_unlock(&oa->metrics_lock) ordering change from
xe_oa_remove_config_ioctl()
(cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31) |
| An insufficient input validation vulnerability in NETGEAR Orbi devices'
DHCPv6 functionality allows network adjacent attackers authenticated
over WiFi or on LAN to execute OS command injections on the router.
DHCPv6 is not enabled by default. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/amd: Check event before enable to avoid GPF
On AMD machines cpuc->events[idx] can become NULL in a subtle race
condition with NMI->throttle->x86_pmu_stop().
Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF.
This appears to be an AMD only issue.
Syzkaller reported a GPF in amd_pmu_enable_all.
INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143
msecs
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7]
CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk
RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195
arch/x86/events/core.c:1430)
RSP: 0018:ffff888118009d60 EFLAGS: 00010012
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002
R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601
FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0
Call Trace:
<IRQ>
amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2))
x86_pmu_enable (arch/x86/events/core.c:1360)
event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186
kernel/events/core.c:2346)
__perf_remove_from_context (kernel/events/core.c:2435)
event_function (kernel/events/core.c:259)
remote_function (kernel/events/core.c:92 (discriminator 1)
kernel/events/core.c:72 (discriminator 1))
__flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64
kernel/smp.c:135 kernel/smp.c:540)
__sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207
./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272)
sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47)
arch/x86/kernel/smp.c:266 (discriminator 47))
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't log conflicting inode if it's a dir moved in the current transaction
We can't log a conflicting inode if it's a directory and it was moved
from one parent directory to another parent directory in the current
transaction, as this can result an attempt to have a directory with
two hard links during log replay, one for the old parent directory and
another for the new parent directory.
The following scenario triggers that issue:
1) We have directories "dir1" and "dir2" created in a past transaction.
Directory "dir1" has inode A as its parent directory;
2) We move "dir1" to some other directory;
3) We create a file with the name "dir1" in directory inode A;
4) We fsync the new file. This results in logging the inode of the new file
and the inode for the directory "dir1" that was previously moved in the
current transaction. So the log tree has the INODE_REF item for the
new location of "dir1";
5) We move the new file to some other directory. This results in updating
the log tree to included the new INODE_REF for the new location of the
file and removes the INODE_REF for the old location. This happens
during the rename when we call btrfs_log_new_name();
6) We fsync the file, and that persists the log tree changes done in the
previous step (btrfs_log_new_name() only updates the log tree in
memory);
7) We have a power failure;
8) Next time the fs is mounted, log replay happens and when processing
the inode for directory "dir1" we find a new INODE_REF and add that
link, but we don't remove the old link of the inode since we have
not logged the old parent directory of the directory inode "dir1".
As a result after log replay finishes when we trigger writeback of the
subvolume tree's extent buffers, the tree check will detect that we have
a directory a hard link count of 2 and we get a mount failure.
The errors and stack traces reported in dmesg/syslog are like this:
[ 3845.729764] BTRFS info (device dm-0): start tree-log replay
[ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c
[ 3845.731236] memcg:ffff9264c02f4e00
[ 3845.731751] aops:btree_aops [btrfs] ino:1
[ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff)
[ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8
[ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00
[ 3845.735305] page dumped because: eb page dump
[ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir
[ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5
[ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701
[ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160
[ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384
[ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0
[ 3845.737797] rdev 0 sequence 2 flags 0x0
[ 3845.737798] atime 1764259517.0
[ 3845.737800] ctime 1764259517.572889464
[ 3845.737801] mtime 1764259517.572889464
[ 3845.737802] otime 1764259517.0
[ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12
[ 3845.737805] index 0 name_len 2
[ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34
[ 3845.737808] location key (257 1 0) type 2
[ 3845.737810] transid 9 data_len 0 name_len 4
[ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34
[ 3845.737813] location key (258 1 0) type 2
[ 3845.737814] transid 9 data_len 0 name_len 4
[ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34
[ 3845.737816] location key (257 1 0) type 2
[
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: skip lock-range check on equal size to avoid size==0 underflow
When size equals the current i_size (including 0), the code used to call
check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1`
and can underflow for size==0. Skip the equal case. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: fix use-after-free on probe deferral
The driver is dropping the references taken to the larb devices during
probe after successful lookup as well as on errors. This can
potentially lead to a use-after-free in case a larb device has not yet
been bound to its driver so that the iommu driver probe defers.
Fix this by keeping the references as expected while the iommu driver is
bound. |