Search Results (325373 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54007 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vmci_host: fix a race condition in vmci_host_poll() causing GPF During fuzzing, a general protection fault is observed in vmci_host_poll(). general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf] RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926 <- omitting registers -> Call Trace: <TASK> lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162 add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22 poll_wait include/linux/poll.h:49 [inline] vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174 vfs_poll include/linux/poll.h:88 [inline] do_pollfd fs/select.c:873 [inline] do_poll fs/select.c:921 [inline] do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015 __do_sys_ppoll fs/select.c:1121 [inline] __se_sys_ppoll+0x2cc/0x330 fs/select.c:1101 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Example thread interleaving that causes the general protection fault is as follows: CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context) ----- ----- // Read uninitialized context context = vmci_host_dev->context; // Initialize context vmci_host_dev->context = vmci_ctx_create(); vmci_host_dev->ct_type = VMCIOBJ_CONTEXT; if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) { // Dereferencing the wrong pointer poll_wait(..., &context->host_context); } In this scenario, vmci_host_poll() reads vmci_host_dev->context first, and then reads vmci_host_dev->ct_type to check that vmci_host_dev->context is initialized. However, since these two reads are not atomically executed, there is a chance of a race condition as described above. To fix this race condition, read vmci_host_dev->context after checking the value of vmci_host_dev->ct_type so that vmci_host_poll() always reads an initialized context.
CVE-2023-54006 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data-race around unix_tot_inflight. unix_tot_inflight is changed under spin_lock(unix_gc_lock), but unix_release_sock() reads it locklessly. Let's use READ_ONCE() for unix_tot_inflight. Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix: annote lockless accesses to unix_tot_inflight & gc_in_progress") BUG: KCSAN: data-race in unix_inflight / unix_release_sock write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1: unix_inflight+0x130/0x180 net/unix/scm.c:64 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123 unix_scm_to_skb net/unix/af_unix.c:1832 [inline] unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x148/0x160 net/socket.c:747 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547 __sys_sendmsg+0x94/0x140 net/socket.c:2576 __do_sys_sendmsg net/socket.c:2585 [inline] __se_sys_sendmsg net/socket.c:2583 [inline] __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0: unix_release_sock+0x608/0x910 net/unix/af_unix.c:671 unix_release+0x59/0x80 net/unix/af_unix.c:1058 __sock_release+0x7d/0x170 net/socket.c:653 sock_close+0x19/0x30 net/socket.c:1385 __fput+0x179/0x5e0 fs/file_table.c:321 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x116/0x1a0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc value changed: 0x00000000 -> 0x00000001 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
CVE-2023-54000 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix deadlock issue when externel_lb and reset are executed together When externel_lb and reset are executed together, a deadlock may occur: [ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds. [ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008 [ 3147.248045] Workqueue: hclge hclge_service_task [hclge] [ 3147.253957] Call trace: [ 3147.257093] __switch_to+0x7c/0xbc [ 3147.261183] __schedule+0x338/0x6f0 [ 3147.265357] schedule+0x50/0xe0 [ 3147.269185] schedule_preempt_disabled+0x18/0x24 [ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc [ 3147.279880] __mutex_lock_slowpath+0x1c/0x30 [ 3147.284839] mutex_lock+0x50/0x60 [ 3147.288841] rtnl_lock+0x20/0x2c [ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge] [ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge] [ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge] [ 3147.309718] hclge_service_task+0x2c/0x70 [hclge] [ 3147.315109] process_one_work+0x1d0/0x490 [ 3147.319805] worker_thread+0x158/0x3d0 [ 3147.324240] kthread+0x108/0x13c [ 3147.328154] ret_from_fork+0x10/0x18 In externel_lb process, the hns3 driver call napi_disable() first, then the reset happen, then the restore process of the externel_lb will fail, and will not call napi_enable(). When doing externel_lb again, napi_disable() will be double call, cause a deadlock of rtnl_lock(). This patch use the HNS3_NIC_STATE_DOWN state to protect the calling of napi_disable() and napi_enable() in externel_lb process, just as the usage in ndo_stop() and ndo_start().
CVE-2023-53991 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Disallow unallocated resources to be returned In the event that the topology requests resources that have not been created by the system (because they are typically not represented in dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC blocks, until their allocation/assignment is being sanity-checked in "drm/msm/dpu: Reject topologies for which no DSC blocks are available") remain NULL but will still be returned out of dpu_rm_get_assigned_resources, where the caller expects to get an array containing num_blks valid pointers (but instead gets these NULLs). To prevent this from happening, where null-pointer dereferences typically result in a hard-to-debug platform lockup, num_blks shouldn't increase past NULL blocks and will print an error and break instead. After all, max_blks represents the static size of the maximum number of blocks whereas the actual amount varies per platform. ^1: which can happen after a git rebase ended up moving additions to _dpu_cfg to a different struct which has the same patch context. Patchwork: https://patchwork.freedesktop.org/patch/517636/
CVE-2023-53989 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: arm64: mm: fix VA-range sanity check Both create_mapping_noalloc() and update_mapping_prot() sanity-check their 'virt' parameter, but the check itself doesn't make much sense. The condition used today appears to be a historical accident. The sanity-check condition: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } ... can only be true for the KASAN shadow region or the module region, and there's no reason to exclude these specifically for creating and updateing mappings. When arm64 support was first upstreamed in commit: c1cc1552616d0f35 ("arm64: MMU initialisation") ... the condition was: if (virt < VMALLOC_START) { [ ... warning here ... ] return; } At the time, VMALLOC_START was the lowest kernel address, and this was checking whether 'virt' would be translated via TTBR1. Subsequently in commit: 14c127c957c1c607 ("arm64: mm: Flip kernel VA space") ... the condition was changed to: if ((virt >= VA_START) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } This appear to have been a thinko. The commit moved the linear map to the bottom of the kernel address space, with VMALLOC_START being at the halfway point. The old condition would warn for changes to the linear map below this, and at the time VA_START was the end of the linear map. Subsequently we cleaned up the naming of VA_START in commit: 77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END") ... keeping the erroneous condition as: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } Correct the condition to check against the start of the TTBR1 address space, which is currently PAGE_OFFSET. This simplifies the logic, and more clearly matches the "outside kernel range" message in the warning.
CVE-2022-50706 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/ieee802154: don't warn zero-sized raw_sendmsg() syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1], for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting __dev_queue_xmit() with skb->len == 0. Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was able to return 0, don't call __dev_queue_xmit() if packet length is 0. ---------- #include <sys/socket.h> #include <netinet/in.h> int main(int argc, char *argv[]) { struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) }; struct iovec iov = { }; struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 }; sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0); return 0; } ---------- Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't redirect packets with invalid pkt_len") should be reverted, for skb->len == 0 was acceptable for at least PF_IEEE802154 socket.
CVE-2025-66209 1 Coollabsio 1 Coolify 2025-12-29 N/A
Coolify is an open-source and self-hostable tool for managing servers, applications, and databases. Prior to version 4.0.0-beta.451, an authenticated command injection vulnerability in the Database Backup functionality allows users with application/service management permissions to execute arbitrary commands as root on managed servers. Database names used in backup operations are passed directly to shell commands without sanitization, enabling full remote code execution. Version 4.0.0-beta.451 fixes the issue.
CVE-2025-68347 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: firewire-motu: fix buffer overflow in hwdep read for DSP events The DSP event handling code in hwdep_read() could write more bytes to the user buffer than requested, when a user provides a buffer smaller than the event header size (8 bytes). Fix by using min_t() to clamp the copy size, This ensures we never copy more than the user requested.
CVE-2025-68357 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iomap: allocate s_dio_done_wq for async reads as well Since commit 222f2c7c6d14 ("iomap: always run error completions in user context"), read error completions are deferred to s_dio_done_wq. This means the workqueue also needs to be allocated for async reads.
CVE-2025-66444 1 Hitachi 2 Infrastructure Analytics Advisor, Ops Center Analyzer 2025-12-29 8.2 High
Cross-site Scripting vulnerability in Hitachi Infrastructure Analytics Advisor (Data Center Analytics component) and Hitachi Ops Center Analyzer (Hitachi Ops Center Analyzer detail view component).This issue affects Hitachi Infrastructure Analytics Advisor:; Hitachi Ops Center Analyzer: from 10.0.0-00 before 11.0.5-00.
CVE-2025-66445 1 Hitachi 2 Infrastructure Analytics Advisor, Ops Center Analyzer 2025-12-29 7.1 High
Authorization bypass vulnerability in Hitachi Infrastructure Analytics Advisor (Data Center Analytics component) and Hitachi Ops Center Analyzer (Hitachi Ops Center Analyzer detail view component).This issue affects Hitachi Infrastructure Analytics Advisor:; Hitachi Ops Center Analyzer: from 10.0.0-00 before 11.0.5-00.
CVE-2025-68345 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: cs35l41: Fix NULL pointer dereference in cs35l41_hda_read_acpi() The acpi_get_first_physical_node() function can return NULL, in which case the get_device() function also returns NULL, but this value is then dereferenced without checking,so add a check to prevent a crash. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-68346 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: dice: fix buffer overflow in detect_stream_formats() The function detect_stream_formats() reads the stream_count value directly from a FireWire device without validating it. This can lead to out-of-bounds writes when a malicious device provides a stream_count value greater than MAX_STREAMS. Fix by applying the same validation to both TX and RX stream counts in detect_stream_formats().
CVE-2025-68348 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix memory leak in __blkdev_issue_zero_pages Move the fatal signal check before bio_alloc() to prevent a memory leak when BLKDEV_ZERO_KILLABLE is set and a fatal signal is pending. Previously, the bio was allocated before checking for a fatal signal. If a signal was pending, the code would break out of the loop without freeing or chaining the just-allocated bio, causing a memory leak. This matches the pattern already used in __blkdev_issue_write_zeroes() where the signal check precedes the allocation.
CVE-2025-68352 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: ch341: fix out-of-bounds memory access in ch341_transfer_one Discovered by Atuin - Automated Vulnerability Discovery Engine. The 'len' variable is calculated as 'min(32, trans->len + 1)', which includes the 1-byte command header. When copying data from 'trans->tx_buf' to 'ch341->tx_buf + 1', using 'len' as the length is incorrect because: 1. It causes an out-of-bounds read from 'trans->tx_buf' (which has size 'trans->len', i.e., 'len - 1' in this context). 2. It can cause an out-of-bounds write to 'ch341->tx_buf' if 'len' is CH341_PACKET_LENGTH (32). Writing 32 bytes to ch341->tx_buf + 1 overflows the buffer. Fix this by copying 'len - 1' bytes.
CVE-2025-68353 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: vxlan: prevent NULL deref in vxlan_xmit_one Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the following NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:vxlan_xmit_one+0xbb3/0x1580 Call Trace: vxlan_xmit+0x429/0x610 dev_hard_start_xmit+0x55/0xa0 __dev_queue_xmit+0x6d0/0x7f0 ip_finish_output2+0x24b/0x590 ip_output+0x63/0x110 Mentioned commits changed the code path in vxlan_xmit_one and as a side effect the sock4/6 pointer validity checks in vxlan(6)_get_route were lost. Fix this by adding back checks. Since both commits being fixed were released in the same version (v6.7) and are strongly related, bundle the fixes in a single commit.
CVE-2025-68354 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: core: Protect regulator_supply_alias_list with regulator_list_mutex regulator_supply_alias_list was accessed without any locking in regulator_supply_alias(), regulator_register_supply_alias(), and regulator_unregister_supply_alias(). Concurrent registration, unregistration and lookups can race, leading to: 1 use-after-free if an alias entry is removed while being read, 2 duplicate entries when two threads register the same alias, 3 inconsistent alias mappings observed by consumers. Protect all traversals, insertions and deletions on regulator_supply_alias_list with the existing regulator_list_mutex.
CVE-2025-11419 1 Redhat 1 Build Keycloak 2025-12-29 7.5 High
A flaw was found in Keycloak. This vulnerability allows an unauthenticated remote attacker to cause a denial of service (DoS) by repeatedly initiating TLS 1.2 client-initiated renegotiation requests to exhaust server CPU resources, making the service unavailable.
CVE-2022-50697 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mrp: introduce active flags to prevent UAF when applicant uninit The caller of del_timer_sync must prevent restarting of the timer, If we have no this synchronization, there is a small probability that the cancellation will not be successful. And syzbot report the fellowing crash: ================================================================== BUG: KASAN: use-after-free in hlist_add_head include/linux/list.h:929 [inline] BUG: KASAN: use-after-free in enqueue_timer+0x18/0xa4 kernel/time/timer.c:605 Write at addr f9ff000024df6058 by task syz-fuzzer/2256 Pointer tag: [f9], memory tag: [fe] CPU: 1 PID: 2256 Comm: syz-fuzzer Not tainted 6.1.0-rc5-syzkaller-00008- ge01d50cbd6ee #0 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace.part.0+0xe0/0xf0 arch/arm64/kernel/stacktrace.c:156 dump_backtrace arch/arm64/kernel/stacktrace.c:162 [inline] show_stack+0x18/0x40 arch/arm64/kernel/stacktrace.c:163 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x68/0x84 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:284 [inline] print_report+0x1a8/0x4a0 mm/kasan/report.c:395 kasan_report+0x94/0xb4 mm/kasan/report.c:495 __do_kernel_fault+0x164/0x1e0 arch/arm64/mm/fault.c:320 do_bad_area arch/arm64/mm/fault.c:473 [inline] do_tag_check_fault+0x78/0x8c arch/arm64/mm/fault.c:749 do_mem_abort+0x44/0x94 arch/arm64/mm/fault.c:825 el1_abort+0x40/0x60 arch/arm64/kernel/entry-common.c:367 el1h_64_sync_handler+0xd8/0xe4 arch/arm64/kernel/entry-common.c:427 el1h_64_sync+0x64/0x68 arch/arm64/kernel/entry.S:576 hlist_add_head include/linux/list.h:929 [inline] enqueue_timer+0x18/0xa4 kernel/time/timer.c:605 mod_timer+0x14/0x20 kernel/time/timer.c:1161 mrp_periodic_timer_arm net/802/mrp.c:614 [inline] mrp_periodic_timer+0xa0/0xc0 net/802/mrp.c:627 call_timer_fn.constprop.0+0x24/0x80 kernel/time/timer.c:1474 expire_timers+0x98/0xc4 kernel/time/timer.c:1519 To fix it, we can introduce a new active flags to make sure the timer will not restart.
CVE-2022-50701 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host SDIO may need addtional 511 bytes to align bus operation. If the tailroom of this skb is not big enough, we would access invalid memory region. For low level operation, increase skb size to keep valid memory access in SDIO host. Error message: [69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0 [69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451 [69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1 [69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300] [69.951] Call Trace: [69.951] <TASK> [69.952] dump_stack_lvl+0x49/0x63 [69.952] print_report+0x171/0x4a8 [69.952] kasan_report+0xb4/0x130 [69.952] kasan_check_range+0x149/0x1e0 [69.952] memcpy+0x24/0x70 [69.952] sg_copy_buffer+0xe9/0x1a0 [69.952] sg_copy_to_buffer+0x12/0x20 [69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300] [69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300] [69.952] process_one_work+0x7ee/0x1320 [69.952] worker_thread+0x53c/0x1240 [69.952] kthread+0x2b8/0x370 [69.952] ret_from_fork+0x1f/0x30 [69.952] </TASK> [69.952] Allocated by task 854: [69.952] kasan_save_stack+0x26/0x50 [69.952] kasan_set_track+0x25/0x30 [69.952] kasan_save_alloc_info+0x1b/0x30 [69.952] __kasan_kmalloc+0x87/0xa0 [69.952] __kmalloc_node_track_caller+0x63/0x150 [69.952] kmalloc_reserve+0x31/0xd0 [69.952] __alloc_skb+0xfc/0x2b0 [69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76] [69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76] [69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76] [69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib] [69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib] [69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common] [69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s] [69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common] [69.953] process_one_work+0x7ee/0x1320 [69.953] worker_thread+0x53c/0x1240 [69.953] kthread+0x2b8/0x370 [69.953] ret_from_fork+0x1f/0x30 [69.953] The buggy address belongs to the object at ffff88811c9ce800 which belongs to the cache kmalloc-2k of size 2048 [69.953] The buggy address is located 0 bytes to the right of 2048-byte region [ffff88811c9ce800, ffff88811c9cf000) [69.953] Memory state around the buggy address: [69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ^ [69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc