Search Results (325399 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68350 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: exfat: fix divide-by-zero in exfat_allocate_bitmap The variable max_ra_count can be 0 in exfat_allocate_bitmap(), which causes a divide-by-zero error in the subsequent modulo operation (i % max_ra_count), leading to a system crash. When max_ra_count is 0, it means that readahead is not used. This patch load the bitmap without readahead.
CVE-2025-68358 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix racy bitfield write in btrfs_clear_space_info_full() From the memory-barriers.txt document regarding memory barrier ordering guarantees: (*) These guarantees do not apply to bitfields, because compilers often generate code to modify these using non-atomic read-modify-write sequences. Do not attempt to use bitfields to synchronize parallel algorithms. (*) Even in cases where bitfields are protected by locks, all fields in a given bitfield must be protected by one lock. If two fields in a given bitfield are protected by different locks, the compiler's non-atomic read-modify-write sequences can cause an update to one field to corrupt the value of an adjacent field. btrfs_space_info has a bitfield sharing an underlying word consisting of the fields full, chunk_alloc, and flush: struct btrfs_space_info { struct btrfs_fs_info * fs_info; /* 0 8 */ struct btrfs_space_info * parent; /* 8 8 */ ... int clamp; /* 172 4 */ unsigned int full:1; /* 176: 0 4 */ unsigned int chunk_alloc:1; /* 176: 1 4 */ unsigned int flush:1; /* 176: 2 4 */ ... Therefore, to be safe from parallel read-modify-writes losing a write to one of the bitfield members protected by a lock, all writes to all the bitfields must use the lock. They almost universally do, except for btrfs_clear_space_info_full() which iterates over the space_infos and writes out found->full = 0 without a lock. Imagine that we have one thread completing a transaction in which we finished deleting a block_group and are thus calling btrfs_clear_space_info_full() while simultaneously the data reclaim ticket infrastructure is running do_async_reclaim_data_space(): T1 T2 btrfs_commit_transaction btrfs_clear_space_info_full data_sinfo->full = 0 READ: full:0, chunk_alloc:0, flush:1 do_async_reclaim_data_space(data_sinfo) spin_lock(&space_info->lock); if(list_empty(tickets)) space_info->flush = 0; READ: full: 0, chunk_alloc:0, flush:1 MOD/WRITE: full: 0, chunk_alloc:0, flush:0 spin_unlock(&space_info->lock); return; MOD/WRITE: full:0, chunk_alloc:0, flush:1 and now data_sinfo->flush is 1 but the reclaim worker has exited. This breaks the invariant that flush is 0 iff there is no work queued or running. Once this invariant is violated, future allocations that go into __reserve_bytes() will add tickets to space_info->tickets but will see space_info->flush is set to 1 and not queue the work. After this, they will block forever on the resulting ticket, as it is now impossible to kick the worker again. I also confirmed by looking at the assembly of the affected kernel that it is doing RMW operations. For example, to set the flush (3rd) bit to 0, the assembly is: andb $0xfb,0x60(%rbx) and similarly for setting the full (1st) bit to 0: andb $0xfe,-0x20(%rax) So I think this is really a bug on practical systems. I have observed a number of systems in this exact state, but am currently unable to reproduce it. Rather than leaving this footgun lying around for the future, take advantage of the fact that there is room in the struct anyway, and that it is already quite large and simply change the three bitfield members to bools. This avoids writes to space_info->full having any effect on ---truncated---
CVE-2022-50710 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: set tx_tstamps when creating new Tx rings via ethtool When the user changes the number of queues via ethtool, the driver allocates new rings. This allocation did not initialize tx_tstamps. This results in the tx_tstamps field being zero (due to kcalloc allocation), and would result in a NULL pointer dereference when attempting a transmit timestamp on the new ring.
CVE-2022-50705 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/rw: defer fsnotify calls to task context We can't call these off the kiocb completion as that might be off soft/hard irq context. Defer the calls to when we process the task_work for this request. That avoids valid complaints like: stack backtrace: CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_usage_bug kernel/locking/lockdep.c:3961 [inline] valid_state kernel/locking/lockdep.c:3973 [inline] mark_lock_irq kernel/locking/lockdep.c:4176 [inline] mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632 mark_lock kernel/locking/lockdep.c:4596 [inline] mark_usage kernel/locking/lockdep.c:4527 [inline] __lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007 lock_acquire kernel/locking/lockdep.c:5666 [inline] lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631 __fs_reclaim_acquire mm/page_alloc.c:4674 [inline] fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688 might_alloc include/linux/sched/mm.h:271 [inline] slab_pre_alloc_hook mm/slab.h:700 [inline] slab_alloc mm/slab.c:3278 [inline] __kmem_cache_alloc_lru mm/slab.c:3471 [inline] kmem_cache_alloc+0x39/0x520 mm/slab.c:3491 fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline] fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline] fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948 send_to_group fs/notify/fsnotify.c:360 [inline] fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570 __fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230 fsnotify_parent include/linux/fsnotify.h:77 [inline] fsnotify_file include/linux/fsnotify.h:99 [inline] fsnotify_access include/linux/fsnotify.h:309 [inline] __io_complete_rw_common+0x485/0x720 io_uring/rw.c:195 io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228 iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline] iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178 bio_endio+0x5f9/0x780 block/bio.c:1564 req_bio_endio block/blk-mq.c:695 [inline] blk_update_request+0x3fc/0x1300 block/blk-mq.c:825 scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541 scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971 scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438 blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022 __do_softirq+0x1d3/0x9c6 kernel/softirq.c:571 invoke_softirq kernel/softirq.c:445 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:650 irq_exit_rcu+0x5/0x20 kernel/softirq.c:662 common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240
CVE-2022-50708 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: HSI: ssi_protocol: fix potential resource leak in ssip_pn_open() ssip_pn_open() claims the HSI client's port with hsi_claim_port(). When hsi_register_port_event() gets some error and returns a negetive value, the HSI client's port should be released with hsi_release_port(). Fix it by calling hsi_release_port() when hsi_register_port_event() fails.
CVE-2025-68696 1 John Nunemaker 1 Httparty 2025-12-29 9.3 Critical
httparty is an API tool. In versions 0.23.2 and prior, httparty is vulnerable to SSRF. This issue can pose a risk of leaking API keys, and it can also allow third parties to issue requests to internal servers. This issue has been patched via commit 0529bcd.
CVE-2025-68669 1 Nanbingxyz 1 5ire 2025-12-29 9.7 Critical
5ire is a cross-platform desktop artificial intelligence assistant and model context protocol client. In versions 0.15.2 and prior, an RCE vulnerability exists in useMarkdown.ts, where the markdown-it-mermaid plugin is initialized with securityLevel: 'loose'. This configuration explicitly permits the rendering of HTML tags within Mermaid diagram nodes. This issue has not been patched at time of publication.
CVE-2025-13773 2 Tychesoftwares, Wordpress 2 Print Invoice & Delivery Notes For Woocommerce, Wordpress 2025-12-29 9.8 Critical
The Print Invoice & Delivery Notes for WooCommerce plugin for WordPress is vulnerable to Remote Code Execution in all versions up to, and including, 5.8.0 via the 'WooCommerce_Delivery_Notes::update' function. This is due to missing capability check in the 'WooCommerce_Delivery_Notes::update' function, PHP enabled in Dompdf, and missing escape in the 'template.php' file. This makes it possible for unauthenticated attackers to execute code on the server.
CVE-2023-54003 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Fix GID entry ref leak when create_ah fails If AH create request fails, release sgid_attr to avoid GID entry referrence leak reported while releasing GID table
CVE-2023-54018 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/hdmi: Add missing check for alloc_ordered_workqueue Add check for the return value of alloc_ordered_workqueue as it may return NULL pointer and cause NULL pointer dereference in `hdmi_hdcp.c` and `hdmi_hpd.c`. Patchwork: https://patchwork.freedesktop.org/patch/517211/
CVE-2025-13715 1 Tencent 1 Facedetection-dsfd 2025-12-29 N/A
Tencent FaceDetection-DSFD resnet Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent FaceDetection-DSFD. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the resnet endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27197.
CVE-2025-14494 1 Realdefense 1 Superantispyware 2025-12-29 N/A
RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27676.
CVE-2021-47739 1 Epicgames 1 Easy Anti-cheat 2025-12-29 8.4 High
Epic Games Easy Anti-Cheat 4.0 contains an unquoted service path vulnerability that allows local non-privileged users to execute arbitrary code with elevated system privileges. Attackers can exploit the service configuration by inserting malicious code in the system root path that would execute with LocalSystem privileges during application startup.
CVE-2022-50700 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: Delay the unmapping of the buffer On WCN3990, we are seeing a rare scenario where copy engine hardware is sending a copy complete interrupt to the host driver while still processing the buffer that the driver has sent, this is leading into an SMMU fault triggering kernel panic. This is happening on copy engine channel 3 (CE3) where the driver normally enqueues WMI commands to the firmware. Upon receiving a copy complete interrupt, host driver will immediately unmap and frees the buffer presuming that hardware has processed the buffer. In the issue case, upon receiving copy complete interrupt, host driver will unmap and free the buffer but since hardware is still accessing the buffer (which in this case got unmapped in parallel), SMMU hardware will trigger an SMMU fault resulting in a kernel panic. In order to avoid this, as a work around, add a delay before unmapping the copy engine source DMA buffer. This is conditionally done for WCN3990 and only for the CE3 channel where issue is seen. Below is the crash signature: wifi smmu error: kernel: [ 10.120965] arm-smmu 15000000.iommu: Unhandled context fault: fsr=0x402, iova=0x7fdfd8ac0, fsynr=0x500003,cbfrsynra=0xc1, cb=6 arm-smmu 15000000.iommu: Unhandled context fault:fsr=0x402, iova=0x7fe06fdc0, fsynr=0x710003, cbfrsynra=0xc1, cb=6 qcom-q6v5-mss 4080000.remoteproc: fatal error received: err_qdi.c:1040:EF:wlan_process:0x1:WLAN RT:0x2091: cmnos_thread.c:3998:Asserted in copy_engine.c:AXI_ERROR_DETECTED:2149 remoteproc remoteproc0: crash detected in 4080000.remoteproc: type fatal error <3> remoteproc remoteproc0: handling crash #1 in 4080000.remoteproc pc : __arm_lpae_unmap+0x500/0x514 lr : __arm_lpae_unmap+0x4bc/0x514 sp : ffffffc011ffb530 x29: ffffffc011ffb590 x28: 0000000000000000 x27: 0000000000000000 x26: 0000000000000004 x25: 0000000000000003 x24: ffffffc011ffb890 x23: ffffffa762ef9be0 x22: ffffffa77244ef00 x21: 0000000000000009 x20: 00000007fff7c000 x19: 0000000000000003 x18: 0000000000000000 x17: 0000000000000004 x16: ffffffd7a357d9f0 x15: 0000000000000000 x14: 00fd5d4fa7ffffff x13: 000000000000000e x12: 0000000000000000 x11: 00000000ffffffff x10: 00000000fffffe00 x9 : 000000000000017c x8 : 000000000000000c x7 : 0000000000000000 x6 : ffffffa762ef9000 x5 : 0000000000000003 x4 : 0000000000000004 x3 : 0000000000001000 x2 : 00000007fff7c000 x1 : ffffffc011ffb890 x0 : 0000000000000000 Call trace: __arm_lpae_unmap+0x500/0x514 __arm_lpae_unmap+0x4bc/0x514 __arm_lpae_unmap+0x4bc/0x514 arm_lpae_unmap_pages+0x78/0xa4 arm_smmu_unmap_pages+0x78/0x104 __iommu_unmap+0xc8/0x1e4 iommu_unmap_fast+0x38/0x48 __iommu_dma_unmap+0x84/0x104 iommu_dma_free+0x34/0x50 dma_free_attrs+0xa4/0xd0 ath10k_htt_rx_free+0xc4/0xf4 [ath10k_core] ath10k_core_stop+0x64/0x7c [ath10k_core] ath10k_halt+0x11c/0x180 [ath10k_core] ath10k_stop+0x54/0x94 [ath10k_core] drv_stop+0x48/0x1c8 [mac80211] ieee80211_do_open+0x638/0x77c [mac80211] ieee80211_open+0x48/0x5c [mac80211] __dev_open+0xb4/0x174 __dev_change_flags+0xc4/0x1dc dev_change_flags+0x3c/0x7c devinet_ioctl+0x2b4/0x580 inet_ioctl+0xb0/0x1b4 sock_do_ioctl+0x4c/0x16c compat_ifreq_ioctl+0x1cc/0x35c compat_sock_ioctl+0x110/0x2ac __arm64_compat_sys_ioctl+0xf4/0x3e0 el0_svc_common+0xb4/0x17c el0_svc_compat_handler+0x2c/0x58 el0_svc_compat+0x8/0x2c Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1
CVE-2022-50703 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe() There are two refcount leak bugs in qcom_smsm_probe(): (1) The 'local_node' is escaped out from for_each_child_of_node() as the break of iteration, we should call of_node_put() for it in error path or when it is not used anymore. (2) The 'node' is escaped out from for_each_available_child_of_node() as the 'goto', we should call of_node_put() for it in goto target.
CVE-2025-68664 1 Langchain-ai 1 Langchain 2025-12-29 9.3 Critical
LangChain is a framework for building agents and LLM-powered applications. Prior to versions 0.3.81 and 1.2.5, a serialization injection vulnerability exists in LangChain's dumps() and dumpd() functions. The functions do not escape dictionaries with 'lc' keys when serializing free-form dictionaries. The 'lc' key is used internally by LangChain to mark serialized objects. When user-controlled data contains this key structure, it is treated as a legitimate LangChain object during deserialization rather than plain user data. This issue has been patched in versions 0.3.81 and 1.2.5.
CVE-2025-12495 1 Openexr 1 Openexr 2025-12-29 7.8 High
Academy Software Foundation OpenEXR EXR File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Academy Software Foundation OpenEXR. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of EXR files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27946.
CVE-2025-68355 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix exclusive map memory leak When excl_prog_hash is 0 and excl_prog_hash_size is non-zero, the map also needs to be freed. Otherwise, the map memory will not be reclaimed, just like the memory leak problem reported by syzbot [1]. syzbot reported: BUG: memory leak backtrace (crc 7b9fb9b4): map_create+0x322/0x11e0 kernel/bpf/syscall.c:1512 __sys_bpf+0x3556/0x3610 kernel/bpf/syscall.c:6131
CVE-2023-53997 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: of: fix double-free on unregistration Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal zone parameters structure"), thermal_zone_device_register() allocates a copy of the tzp argument and frees it when unregistering, so thermal_of_zone_register() now ends up leaking its original tzp and double-freeing the tzp copy. Fix this by locating tzp on stack instead.
CVE-2023-53987 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ping: Fix potentail NULL deref for /proc/net/icmp. After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid of rwlock"), we use RCU for ping sockets, but we should use spinlock for /proc/net/icmp to avoid a potential NULL deref mentioned in the previous patch. Let's go back to using spinlock there. Note we can convert ping sockets to use hlist instead of hlist_nulls because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets.