| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| SolarEdge SE3680H has an exposed debug/test interface accessible to unauthenticated actors, allowing disclosure of system internals and execution of debug commands. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: Initialize ssc before laundromat_work to prevent NULL dereference
In nfs4_state_start_net(), laundromat_work may access nfsd_ssc through
nfs4_laundromat -> nfsd4_ssc_expire_umount. If nfsd_ssc isn't initialized,
this can cause NULL pointer dereference.
Normally the delayed start of laundromat_work allows sufficient time for
nfsd_ssc initialization to complete. However, when the kernel waits too
long for userspace responses (e.g. in nfs4_state_start_net ->
nfsd4_end_grace -> nfsd4_record_grace_done -> nfsd4_cld_grace_done ->
cld_pipe_upcall -> __cld_pipe_upcall -> wait_for_completion path), the
delayed work may start before nfsd_ssc initialization finishes.
Fix this by moving nfsd_ssc initialization before starting laundromat_work. |
| Multiple memory corruption issues were addressed with improved input validation. This issue is fixed in watchOS 26.2, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2, tvOS 26.2. A malicious HID device may cause an unexpected process crash. |
| A race condition was addressed with improved state handling. This issue is fixed in watchOS 26.2, Safari 26.2, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2, tvOS 26.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| In JetBrains TeamCity before 2025.11 maven embedder allowed loading extensions via project configuration |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Don't leave consecutive consumed OOB skbs.
Jann Horn reported a use-after-free in unix_stream_read_generic().
The following sequences reproduce the issue:
$ python3
from socket import *
s1, s2 = socketpair(AF_UNIX, SOCK_STREAM)
s1.send(b'x', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'y', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'z', MSG_OOB)
s2.recv(1) # recv 'z' illegally
s2.recv(1, MSG_OOB) # access 'z' skb (use-after-free)
Even though a user reads OOB data, the skb holding the data stays on
the recv queue to mark the OOB boundary and break the next recv().
After the last send() in the scenario above, the sk2's recv queue has
2 leading consumed OOB skbs and 1 real OOB skb.
Then, the following happens during the next recv() without MSG_OOB
1. unix_stream_read_generic() peeks the first consumed OOB skb
2. manage_oob() returns the next consumed OOB skb
3. unix_stream_read_generic() fetches the next not-yet-consumed OOB skb
4. unix_stream_read_generic() reads and frees the OOB skb
, and the last recv(MSG_OOB) triggers KASAN splat.
The 3. above occurs because of the SO_PEEK_OFF code, which does not
expect unix_skb_len(skb) to be 0, but this is true for such consumed
OOB skbs.
while (skip >= unix_skb_len(skb)) {
skip -= unix_skb_len(skb);
skb = skb_peek_next(skb, &sk->sk_receive_queue);
...
}
In addition to this use-after-free, there is another issue that
ioctl(SIOCATMARK) does not function properly with consecutive consumed
OOB skbs.
So, nothing good comes out of such a situation.
Instead of complicating manage_oob(), ioctl() handling, and the next
ECONNRESET fix by introducing a loop for consecutive consumed OOB skbs,
let's not leave such consecutive OOB unnecessarily.
Now, while receiving an OOB skb in unix_stream_recv_urg(), if its
previous skb is a consumed OOB skb, it is freed.
[0]:
BUG: KASAN: slab-use-after-free in unix_stream_read_actor (net/unix/af_unix.c:3027)
Read of size 4 at addr ffff888106ef2904 by task python3/315
CPU: 2 UID: 0 PID: 315 Comm: python3 Not tainted 6.16.0-rc1-00407-gec315832f6f9 #8 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:636)
unix_stream_read_actor (net/unix/af_unix.c:3027)
unix_stream_read_generic (net/unix/af_unix.c:2708 net/unix/af_unix.c:2847)
unix_stream_recvmsg (net/unix/af_unix.c:3048)
sock_recvmsg (net/socket.c:1063 (discriminator 20) net/socket.c:1085 (discriminator 20))
__sys_recvfrom (net/socket.c:2278)
__x64_sys_recvfrom (net/socket.c:2291 (discriminator 1) net/socket.c:2287 (discriminator 1) net/socket.c:2287 (discriminator 1))
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f8911fcea06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007fffdb0dccb0 EFLAGS: 00000202 ORIG_RAX: 000000000000002d
RAX: ffffffffffffffda RBX: 00007fffdb0dcdc8 RCX: 00007f8911fcea06
RDX: 0000000000000001 RSI: 00007f8911a5e060 RDI: 0000000000000006
RBP: 00007fffdb0dccd0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000202 R12: 00007f89119a7d20
R13: ffffffffc4653600 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 315:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:348)
kmem_cache_alloc_
---truncated--- |
| In JetBrains TeamCity before 2025.11 stored XSS was possible on agentpushInstall page |
| In JetBrains TeamCity before 2025.11 port enumeration was possible via the Perforce connection test |
| In JetBrains TeamCity before 2025.11 reflected XSS was possible on VCS Root setup |
| In JetBrains TeamCity before 2025.11 a DOM-based XSS was possible on the OAuth connections tab |
| In the Linux kernel, the following vulnerability has been resolved:
media: platform: exynos4-is: Add hardware sync wait to fimc_is_hw_change_mode()
In fimc_is_hw_change_mode(), the function changes camera modes without
waiting for hardware completion, risking corrupted data or system hangs
if subsequent operations proceed before the hardware is ready.
Add fimc_is_hw_wait_intmsr0_intmsd0() after mode configuration, ensuring
hardware state synchronization and stable interrupt handling. |
| In JetBrains TeamCity before 2025.11.1 excessive privileges were possible due to storing GitHub personal access token instead of an installation token |
| A local file inclusion (LFI) vulnerability in RiteCMS v3.1.0 allows attackers to read arbitrary files on the host via a directory traversal in the admin_language_file and default_page_language_file in the admin.php component |
| A Cross-Site Request Forgery (CSRF) in the page creation/editing function of RiteCMS v3.1.0 allows attackers to arbitrarily create pages via a crafted POST request. |
| Incorrect access control in the /templates/ component of RiteCMS v3.1.0 allows attackers to access sensitive files via directory traversal. |
| A reflected cross-site scripting (XSS) vulnerability in RiteCMS v3.1.0 allows attackers to execute arbitrary code in the context of a user's browser via a crafted payload. |
| RiteCMS v3.1.0 was discovered to use insecure encryption to store passwords. |
| RiteCMS v3.1.0 was discovered to contain an authenticated remote code execution (RCE) vulnerability via the parse_special_tags() function. |
| A Buffer overflow vulnerability in function fromAdvSetMacMtuWan of bin httpd in Tenda AC10V4.0 V16.03.10.20 allows remote attackers to cause denial of service and possibly code execution by sending a post request with a crafted payload (field `serverName`) to /goform/AdvSetMacMtuWan. |
| CSRF vulnerability in narda miteq Uplink Power Contril Unit UPC2 v.1.17 allows a remote attacker to execute arbitrary code via the Web-based management interface and specifically the /system_setup.htm, /set_clock.htm, /receiver_setup.htm, /cal.htm?..., and /channel_setup.htm endpoints |