Search Results (332973 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23148 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix race in nvmet_bio_done() leading to NULL pointer dereference There is a race condition in nvmet_bio_done() that can cause a NULL pointer dereference in blk_cgroup_bio_start(): 1. nvmet_bio_done() is called when a bio completes 2. nvmet_req_complete() is called, which invokes req->ops->queue_response(req) 3. The queue_response callback can re-queue and re-submit the same request 4. The re-submission reuses the same inline_bio from nvmet_req 5. Meanwhile, nvmet_req_bio_put() (called after nvmet_req_complete) invokes bio_uninit() for inline_bio, which sets bio->bi_blkg to NULL 6. The re-submitted bio enters submit_bio_noacct_nocheck() 7. blk_cgroup_bio_start() dereferences bio->bi_blkg, causing a crash: BUG: kernel NULL pointer dereference, address: 0000000000000028 #PF: supervisor read access in kernel mode RIP: 0010:blk_cgroup_bio_start+0x10/0xd0 Call Trace: submit_bio_noacct_nocheck+0x44/0x250 nvmet_bdev_execute_rw+0x254/0x370 [nvmet] process_one_work+0x193/0x3c0 worker_thread+0x281/0x3a0 Fix this by reordering nvmet_bio_done() to call nvmet_req_bio_put() BEFORE nvmet_req_complete(). This ensures the bio is cleaned up before the request can be re-submitted, preventing the race condition.
CVE-2026-23147 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: zlib: fix the folio leak on S390 hardware acceleration [BUG] After commit aa60fe12b4f4 ("btrfs: zlib: refactor S390x HW acceleration buffer preparation"), we no longer release the folio of the page cache of folio returned by btrfs_compress_filemap_get_folio() for S390 hardware acceleration path. [CAUSE] Before that commit, we call kumap_local() and folio_put() after handling each folio. Although the timing is not ideal (it release previous folio at the beginning of the loop, and rely on some extra cleanup out of the loop), it at least handles the folio release correctly. Meanwhile the refactored code is easier to read, it lacks the call to release the filemap folio. [FIX] Add the missing folio_put() for copy_data_into_buffer().
CVE-2026-23146 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_uart: fix null-ptr-deref in hci_uart_write_work hci_uart_set_proto() sets HCI_UART_PROTO_INIT before calling hci_uart_register_dev(), which calls proto->open() to initialize hu->priv. However, if a TTY write wakeup occurs during this window, hci_uart_tx_wakeup() may schedule write_work before hu->priv is initialized, leading to a NULL pointer dereference in hci_uart_write_work() when proto->dequeue() accesses hu->priv. The race condition is: CPU0 CPU1 ---- ---- hci_uart_set_proto() set_bit(HCI_UART_PROTO_INIT) hci_uart_register_dev() tty write wakeup hci_uart_tty_wakeup() hci_uart_tx_wakeup() schedule_work(&hu->write_work) proto->open(hu) // initializes hu->priv hci_uart_write_work() hci_uart_dequeue() proto->dequeue(hu) // accesses hu->priv (NULL!) Fix this by moving set_bit(HCI_UART_PROTO_INIT) after proto->open() succeeds, ensuring hu->priv is initialized before any work can be scheduled.
CVE-2026-23145 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ext4: fix iloc.bh leak in ext4_xattr_inode_update_ref The error branch for ext4_xattr_inode_update_ref forget to release the refcount for iloc.bh. Find this when review code.
CVE-2026-23144 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: cleanup attrs subdirs on context dir setup failure When a context DAMON sysfs directory setup is failed after setup of attrs/ directory, subdirectories of attrs/ directory are not cleaned up. As a result, DAMON sysfs interface is nearly broken until the system reboots, and the memory for the unremoved directory is leaked. Cleanup the directories under such failures.
CVE-2026-23143 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: virtio_net: Fix misalignment bug in struct virtnet_info Use the new TRAILING_OVERLAP() helper to fix a misalignment bug along with the following warning: drivers/net/virtio_net.c:429:46: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end] This helper creates a union between a flexible-array member (FAM) and a set of members that would otherwise follow it (in this case `u8 rss_hash_key_data[VIRTIO_NET_RSS_MAX_KEY_SIZE];`). This overlays the trailing members (rss_hash_key_data) onto the FAM (hash_key_data) while keeping the FAM and the start of MEMBERS aligned. The static_assert() ensures this alignment remains. Notice that due to tail padding in flexible `struct virtio_net_rss_config_trailer`, `rss_trailer.hash_key_data` (at offset 83 in struct virtnet_info) and `rss_hash_key_data` (at offset 84 in struct virtnet_info) are misaligned by one byte. See below: struct virtio_net_rss_config_trailer { __le16 max_tx_vq; /* 0 2 */ __u8 hash_key_length; /* 2 1 */ __u8 hash_key_data[]; /* 3 0 */ /* size: 4, cachelines: 1, members: 3 */ /* padding: 1 */ /* last cacheline: 4 bytes */ }; struct virtnet_info { ... struct virtio_net_rss_config_trailer rss_trailer; /* 80 4 */ /* XXX last struct has 1 byte of padding */ u8 rss_hash_key_data[40]; /* 84 40 */ ... /* size: 832, cachelines: 13, members: 48 */ /* sum members: 801, holes: 8, sum holes: 31 */ /* paddings: 2, sum paddings: 5 */ }; After changes, those members are correctly aligned at offset 795: struct virtnet_info { ... union { struct virtio_net_rss_config_trailer rss_trailer; /* 792 4 */ struct { unsigned char __offset_to_hash_key_data[3]; /* 792 3 */ u8 rss_hash_key_data[40]; /* 795 40 */ }; /* 792 43 */ }; /* 792 44 */ ... /* size: 840, cachelines: 14, members: 47 */ /* sum members: 801, holes: 8, sum holes: 35 */ /* padding: 4 */ /* paddings: 1, sum paddings: 4 */ /* last cacheline: 8 bytes */ }; As a result, the RSS key passed to the device is shifted by 1 byte: the last byte is cut off, and instead a (possibly uninitialized) byte is added at the beginning. As a last note `struct virtio_net_rss_config_hdr *rss_hdr;` is also moved to the end, since it seems those three members should stick around together. :)
CVE-2026-23142 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs-scheme: cleanup access_pattern subdirs on scheme dir setup failure When a DAMOS-scheme DAMON sysfs directory setup fails after setup of access_pattern/ directory, subdirectories of access_pattern/ directory are not cleaned up. As a result, DAMON sysfs interface is nearly broken until the system reboots, and the memory for the unremoved directory is leaked. Cleanup the directories under such failures.
CVE-2026-23141 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: send: check for inline extents in range_is_hole_in_parent() Before accessing the disk_bytenr field of a file extent item we need to check if we are dealing with an inline extent. This is because for inline extents their data starts at the offset of the disk_bytenr field. So accessing the disk_bytenr means we are accessing inline data or in case the inline data is less than 8 bytes we can actually cause an invalid memory access if this inline extent item is the first item in the leaf or access metadata from other items.
CVE-2026-23140 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf, test_run: Subtract size of xdp_frame from allowed metadata size The xdp_frame structure takes up part of the XDP frame headroom, limiting the size of the metadata. However, in bpf_test_run, we don't take this into account, which makes it possible for userspace to supply a metadata size that is too large (taking up the entire headroom). If userspace supplies such a large metadata size in live packet mode, the xdp_update_frame_from_buff() call in xdp_test_run_init_page() call will fail, after which packet transmission proceeds with an uninitialised frame structure, leading to the usual Bad Stuff. The commit in the Fixes tag fixed a related bug where the second check in xdp_update_frame_from_buff() could fail, but did not add any additional constraints on the metadata size. Complete the fix by adding an additional check on the metadata size. Reorder the checks slightly to make the logic clearer and add a comment.
CVE-2026-23139 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_conncount: update last_gc only when GC has been performed Currently last_gc is being updated everytime a new connection is tracked, that means that it is updated even if a GC wasn't performed. With a sufficiently high packet rate, it is possible to always bypass the GC, causing the list to grow infinitely. Update the last_gc value only when a GC has been actually performed.
CVE-2026-23138 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: tracing: Add recursion protection in kernel stack trace recording A bug was reported about an infinite recursion caused by tracing the rcu events with the kernel stack trace trigger enabled. The stack trace code called back into RCU which then called the stack trace again. Expand the ftrace recursion protection to add a set of bits to protect events from recursion. Each bit represents the context that the event is in (normal, softirq, interrupt and NMI). Have the stack trace code use the interrupt context to protect against recursion. Note, the bug showed an issue in both the RCU code as well as the tracing stacktrace code. This only handles the tracing stack trace side of the bug. The RCU fix will be handled separately.
CVE-2026-23137 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: of: unittest: Fix memory leak in unittest_data_add() In unittest_data_add(), if of_resolve_phandles() fails, the allocated unittest_data is not freed, leading to a memory leak. Fix this by using scope-based cleanup helper __free(kfree) for automatic resource cleanup. This ensures unittest_data is automatically freed when it goes out of scope in error paths. For the success path, use retain_and_null_ptr() to transfer ownership of the memory to the device tree and prevent double freeing.
CVE-2026-23136 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: libceph: reset sparse-read state in osd_fault() When a fault occurs, the connection is abandoned, reestablished, and any pending operations are retried. The OSD client tracks the progress of a sparse-read reply using a separate state machine, largely independent of the messenger's state. If a connection is lost mid-payload or the sparse-read state machine returns an error, the sparse-read state is not reset. The OSD client will then interpret the beginning of a new reply as the continuation of the old one. If this makes the sparse-read machinery enter a failure state, it may never recover, producing loops like: libceph: [0] got 0 extents libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read Therefore, reset the sparse-read state in osd_fault(), ensuring retries start from a clean state.
CVE-2026-23135 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix dma_free_coherent() pointer dma_alloc_coherent() allocates a DMA mapped buffer and stores the addresses in XXX_unaligned fields. Those should be reused when freeing the buffer rather than the aligned addresses.
CVE-2026-23134 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: slab: fix kmalloc_nolock() context check for PREEMPT_RT On PREEMPT_RT kernels, local_lock becomes a sleeping lock. The current check in kmalloc_nolock() only verifies we're not in NMI or hard IRQ context, but misses the case where preemption is disabled. When a BPF program runs from a tracepoint with preemption disabled (preempt_count > 0), kmalloc_nolock() proceeds to call local_lock_irqsave() which attempts to acquire a sleeping lock, triggering: BUG: sleeping function called from invalid context in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 6128 preempt_count: 2, expected: 0 Fix this by checking !preemptible() on PREEMPT_RT, which directly expresses the constraint that we cannot take a sleeping lock when preemption is disabled. This encompasses the previous checks for NMI and hard IRQ contexts while also catching cases where preemption is disabled.
CVE-2026-23133 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: fix dma_free_coherent() pointer dma_alloc_coherent() allocates a DMA mapped buffer and stores the addresses in XXX_unaligned fields. Those should be reused when freeing the buffer rather than the aligned addresses.
CVE-2026-23132 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/bridge: synopsys: dw-dp: fix error paths of dw_dp_bind Fix several issues in dw_dp_bind() error handling: 1. Missing return after drm_bridge_attach() failure - the function continued execution instead of returning an error. 2. Resource leak: drm_dp_aux_register() is not a devm function, so drm_dp_aux_unregister() must be called on all error paths after aux registration succeeds. This affects errors from: - drm_bridge_attach() - phy_init() - devm_add_action_or_reset() - platform_get_irq() - devm_request_threaded_irq() 3. Bug fix: platform_get_irq() returns the IRQ number or a negative error code, but the error path was returning ERR_PTR(ret) instead of ERR_PTR(dp->irq). Use a goto label for cleanup to ensure consistent error handling.
CVE-2025-71202 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: iommu/sva: invalidate stale IOTLB entries for kernel address space Introduce a new IOMMU interface to flush IOTLB paging cache entries for the CPU kernel address space. This interface is invoked from the x86 architecture code that manages combined user and kernel page tables, specifically before any kernel page table page is freed and reused. This addresses the main issue with vfree() which is a common occurrence and can be triggered by unprivileged users. While this resolves the primary problem, it doesn't address some extremely rare case related to memory unplug of memory that was present as reserved memory at boot, which cannot be triggered by unprivileged users. The discussion can be found at the link below. Enable SVA on x86 architecture since the IOMMU can now receive notification to flush the paging cache before freeing the CPU kernel page table pages.
CVE-2025-71201 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: netfs: Fix early read unlock of page with EOF in middle The read result collection for buffered reads seems to run ahead of the completion of subrequests under some circumstances, as can be seen in the following log snippet: 9p_client_res: client 18446612686390831168 response P9_TREAD tag 0 err 0 ... netfs_sreq: R=00001b55[1] DOWN TERM f=192 s=0 5fb2/5fb2 s=5 e=0 ... netfs_collect_folio: R=00001b55 ix=00004 r=4000-5000 t=4000/5fb2 netfs_folio: i=157f3 ix=00004-00004 read-done netfs_folio: i=157f3 ix=00004-00004 read-unlock netfs_collect_folio: R=00001b55 ix=00005 r=5000-5fb2 t=5000/5fb2 netfs_folio: i=157f3 ix=00005-00005 read-done netfs_folio: i=157f3 ix=00005-00005 read-unlock ... netfs_collect_stream: R=00001b55[0:] cto=5fb2 frn=ffffffff netfs_collect_state: R=00001b55 col=5fb2 cln=6000 n=c netfs_collect_stream: R=00001b55[0:] cto=5fb2 frn=ffffffff netfs_collect_state: R=00001b55 col=5fb2 cln=6000 n=8 ... netfs_sreq: R=00001b55[2] ZERO SUBMT f=000 s=5fb2 0/4e s=0 e=0 netfs_sreq: R=00001b55[2] ZERO TERM f=102 s=5fb2 4e/4e s=5 e=0 The 'cto=5fb2' indicates the collected file pos we've collected results to so far - but we still have 0x4e more bytes to go - so we shouldn't have collected folio ix=00005 yet. The 'ZERO' subreq that clears the tail happens after we unlock the folio, allowing the application to see the uncleared tail through mmap. The problem is that netfs_read_unlock_folios() will unlock a folio in which the amount of read results collected hits EOF position - but the ZERO subreq lies beyond that and so happens after. Fix this by changing the end check to always be the end of the folio and never the end of the file. In the future, I should look at clearing to the end of the folio here rather than adding a ZERO subreq to do this. On the other hand, the ZERO subreq can run in parallel with an async READ subreq. Further, the ZERO subreq may still be necessary to, say, handle extents in a ceph file that don't have any backing store and are thus implicitly all zeros. This can be reproduced by creating a file, the size of which doesn't align to a page boundary, e.g. 24998 (0x5fb2) bytes and then doing something like: xfs_io -c "mmap -r 0 0x6000" -c "madvise -d 0 0x6000" \ -c "mread -v 0 0x6000" /xfstest.test/x The last 0x4e bytes should all be 00, but if the tail hasn't been cleared yet, you may see rubbish there. This can be reproduced with kafs by modifying the kernel to disable the call to netfs_read_subreq_progress() and to stop afs_issue_read() from doing the async call for NETFS_READAHEAD. Reproduction can be made easier by inserting an mdelay(100) in netfs_issue_read() for the ZERO-subreq case. AFS and CIFS are normally unlikely to show this as they dispatch READ ops asynchronously, which allows the ZERO-subreq to finish first. 9P's READ op is completely synchronous, so the ZERO-subreq will always happen after. It isn't seen all the time, though, because the collection may be done in a worker thread.
CVE-2026-23131 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: hp-bioscfg: Fix kobject warnings for empty attribute names The hp-bioscfg driver attempts to register kobjects with empty names when the HP BIOS returns attributes with empty name strings. This causes multiple kernel warnings: kobject: (00000000135fb5e6): attempted to be registered with empty name! WARNING: CPU: 14 PID: 3336 at lib/kobject.c:219 kobject_add_internal+0x2eb/0x310 Add validation in hp_init_bios_buffer_attribute() to check if the attribute name is empty after parsing it from the WMI buffer. If empty, log a debug message and skip registration of that attribute, allowing the module to continue processing other valid attributes.