Search Results (322763 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-22420 1 Google 1 Android 2025-12-10 7.8 High
In multiple locations, there is a possible way to leak audio files across user profiles due to a confused deputy. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
CVE-2025-48566 1 Google 1 Android 2025-12-10 7.8 High
In multiple locations, there is a possible bypass of user profile boundary with a forwarded intent due to improper input validation. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
CVE-2025-22432 1 Google 1 Android 2025-12-10 6.7 Medium
In notifyTimeout of CallRedirectionProcessor.java, there is a possible persistent connection due to improper input validation. This could lead to local escalation of privilege and background activity launches with User execution privileges needed. User interaction is not needed for exploitation.
CVE-2022-36127 1 Apache 1 Skywalking Nodejs Agent 2025-12-10 7.5 High
A vulnerability in Apache SkyWalking NodeJS Agent prior to 0.5.1. The vulnerability will cause NodeJS services that has this agent installed to be unavailable if the OAP is unhealthy and NodeJS agent can't establish the connection.
CVE-2023-53345 1 Linux 1 Linux Kernel 2025-12-10 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix potential data race in rxrpc_wait_to_be_connected() Inside the loop in rxrpc_wait_to_be_connected() it checks call->error to see if it should exit the loop without first checking the call state. This is probably safe as if call->error is set, the call is dead anyway, but we should probably wait for the call state to have been set to completion first, lest it cause surprise on the way out. Fix this by only accessing call->error if the call is complete. We don't actually need to access the error inside the loop as we'll do that after. This caused the following report: BUG: KCSAN: data-race in rxrpc_send_data / rxrpc_set_call_completion write to 0xffff888159cf3c50 of 4 bytes by task 25673 on cpu 1: rxrpc_set_call_completion+0x71/0x1c0 net/rxrpc/call_state.c:22 rxrpc_send_data_packet+0xba9/0x1650 net/rxrpc/output.c:479 rxrpc_transmit_one+0x1e/0x130 net/rxrpc/output.c:714 rxrpc_decant_prepared_tx net/rxrpc/call_event.c:326 [inline] rxrpc_transmit_some_data+0x496/0x600 net/rxrpc/call_event.c:350 rxrpc_input_call_event+0x564/0x1220 net/rxrpc/call_event.c:464 rxrpc_io_thread+0x307/0x1d80 net/rxrpc/io_thread.c:461 kthread+0x1ac/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 read to 0xffff888159cf3c50 of 4 bytes by task 25672 on cpu 0: rxrpc_send_data+0x29e/0x1950 net/rxrpc/sendmsg.c:296 rxrpc_do_sendmsg+0xb7a/0xc20 net/rxrpc/sendmsg.c:726 rxrpc_sendmsg+0x413/0x520 net/rxrpc/af_rxrpc.c:565 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0x375/0x4c0 net/socket.c:2501 ___sys_sendmsg net/socket.c:2555 [inline] __sys_sendmmsg+0x263/0x500 net/socket.c:2641 __do_sys_sendmmsg net/socket.c:2670 [inline] __se_sys_sendmmsg net/socket.c:2667 [inline] __x64_sys_sendmmsg+0x57/0x60 net/socket.c:2667 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x00000000 -> 0xffffffea
CVE-2021-47383 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-12-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: tty: Fix out-of-bound vmalloc access in imageblit This issue happens when a userspace program does an ioctl FBIOPUT_VSCREENINFO passing the fb_var_screeninfo struct containing only the fields xres, yres, and bits_per_pixel with values. If this struct is the same as the previous ioctl, the vc_resize() detects it and doesn't call the resize_screen(), leaving the fb_var_screeninfo incomplete. And this leads to the updatescrollmode() calculates a wrong value to fbcon_display->vrows, which makes the real_y() return a wrong value of y, and that value, eventually, causes the imageblit to access an out-of-bound address value. To solve this issue I made the resize_screen() be called even if the screen does not need any resizing, so it will "fix and fill" the fb_var_screeninfo independently.
CVE-2021-47340 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: jfs: fix GPF in diFree Avoid passing inode with JFS_SBI(inode->i_sb)->ipimap == NULL to diFree()[1]. GFP will appear: struct inode *ipimap = JFS_SBI(ip->i_sb)->ipimap; struct inomap *imap = JFS_IP(ipimap)->i_imap; JFS_IP() will return invalid pointer when ipimap == NULL Call Trace: diFree+0x13d/0x2dc0 fs/jfs/jfs_imap.c:853 [1] jfs_evict_inode+0x2c9/0x370 fs/jfs/inode.c:154 evict+0x2ed/0x750 fs/inode.c:578 iput_final fs/inode.c:1654 [inline] iput.part.0+0x3fe/0x820 fs/inode.c:1680 iput+0x58/0x70 fs/inode.c:1670
CVE-2021-47147 1 Linux 1 Linux Kernel 2025-12-10 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: ptp: ocp: Fix a resource leak in an error handling path If an error occurs after a successful 'pci_ioremap_bar()' call, it must be undone by a corresponding 'pci_iounmap()' call, as already done in the remove function.
CVE-2025-11681 1 M-files 2 M-files Server, Server 2025-12-10 6.5 Medium
Denial-of-service condition in M-Files Server versions before 25.11.15392.1, before 25.2 LTS SR2 and before 25.8 LTS SR2 allows an authenticated user to cause the MFserver process to crash.
CVE-2025-61865 2 Iodata, Microsoft 2 Narsus App, Windows 2025-12-10 N/A
Multiple NAS management applications provided by I-O DATA DEVICE, INC. register Windows services with unquoted file paths. A user with the write permission on the root directory of the system drive may execute arbitrary code with SYSTEM privilege.
CVE-2021-46906 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: usbhid: fix info leak in hid_submit_ctrl In hid_submit_ctrl(), the way of calculating the report length doesn't take into account that report->size can be zero. When running the syzkaller reproducer, a report of size 0 causes hid_submit_ctrl) to calculate transfer_buffer_length as 16384. When this urb is passed to the usb core layer, KMSAN reports an info leak of 16384 bytes. To fix this, first modify hid_report_len() to account for the zero report size case by using DIV_ROUND_UP for the division. Then, call it from hid_submit_ctrl().
CVE-2021-47642 1 Linux 1 Linux Kernel 2025-12-10 7.8 High
In the Linux kernel, the following vulnerability has been resolved: video: fbdev: nvidiafb: Use strscpy() to prevent buffer overflow Coverity complains of a possible buffer overflow. However, given the 'static' scope of nvidia_setup_i2c_bus() it looks like that can't happen after examiniing the call sites. CID 19036 (#1 of 1): Copy into fixed size buffer (STRING_OVERFLOW) 1. fixed_size_dest: You might overrun the 48-character fixed-size string chan->adapter.name by copying name without checking the length. 2. parameter_as_source: Note: This defect has an elevated risk because the source argument is a parameter of the current function. 89 strcpy(chan->adapter.name, name); Fix this warning by using strscpy() which will silence the warning and prevent any future buffer overflows should the names used to identify the channel become much longer.
CVE-2021-47641 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: video: fbdev: cirrusfb: check pixclock to avoid divide by zero Do a sanity check on pixclock value to avoid divide by zero. If the pixclock value is zero, the cirrusfb driver will round up pixclock to get the derived frequency as close to maxclock as possible. Syzkaller reported a divide error in cirrusfb_check_pixclock. divide error: 0000 [#1] SMP KASAN PTI CPU: 0 PID: 14938 Comm: cirrusfb_test Not tainted 5.15.0-rc6 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2 RIP: 0010:cirrusfb_check_var+0x6f1/0x1260 Call Trace: fb_set_var+0x398/0xf90 do_fb_ioctl+0x4b8/0x6f0 fb_ioctl+0xeb/0x130 __x64_sys_ioctl+0x19d/0x220 do_syscall_64+0x3a/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae
CVE-2021-47632 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/set_memory: Avoid spinlock recursion in change_page_attr() Commit 1f9ad21c3b38 ("powerpc/mm: Implement set_memory() routines") included a spin_lock() to change_page_attr() in order to safely perform the three step operations. But then commit 9f7853d7609d ("powerpc/mm: Fix set_memory_*() against concurrent accesses") modify it to use pte_update() and do the operation safely against concurrent access. In the meantime, Maxime reported some spinlock recursion. [ 15.351649] BUG: spinlock recursion on CPU#0, kworker/0:2/217 [ 15.357540] lock: init_mm+0x3c/0x420, .magic: dead4ead, .owner: kworker/0:2/217, .owner_cpu: 0 [ 15.366563] CPU: 0 PID: 217 Comm: kworker/0:2 Not tainted 5.15.0+ #523 [ 15.373350] Workqueue: events do_free_init [ 15.377615] Call Trace: [ 15.380232] [e4105ac0] [800946a4] do_raw_spin_lock+0xf8/0x120 (unreliable) [ 15.387340] [e4105ae0] [8001f4ec] change_page_attr+0x40/0x1d4 [ 15.393413] [e4105b10] [801424e0] __apply_to_page_range+0x164/0x310 [ 15.400009] [e4105b60] [80169620] free_pcp_prepare+0x1e4/0x4a0 [ 15.406045] [e4105ba0] [8016c5a0] free_unref_page+0x40/0x2b8 [ 15.411979] [e4105be0] [8018724c] kasan_depopulate_vmalloc_pte+0x6c/0x94 [ 15.418989] [e4105c00] [801424e0] __apply_to_page_range+0x164/0x310 [ 15.425451] [e4105c50] [80187834] kasan_release_vmalloc+0xbc/0x134 [ 15.431898] [e4105c70] [8015f7a8] __purge_vmap_area_lazy+0x4e4/0xdd8 [ 15.438560] [e4105d30] [80160d10] _vm_unmap_aliases.part.0+0x17c/0x24c [ 15.445283] [e4105d60] [801642d0] __vunmap+0x2f0/0x5c8 [ 15.450684] [e4105db0] [800e32d0] do_free_init+0x68/0x94 [ 15.456181] [e4105dd0] [8005d094] process_one_work+0x4bc/0x7b8 [ 15.462283] [e4105e90] [8005d614] worker_thread+0x284/0x6e8 [ 15.468227] [e4105f00] [8006aaec] kthread+0x1f0/0x210 [ 15.473489] [e4105f40] [80017148] ret_from_kernel_thread+0x14/0x1c Remove the read / modify / write sequence to make the operation atomic and remove the spin_lock() in change_page_attr(). To do the operation atomically, we can't use pte modification helpers anymore. Because all platforms have different combination of bits, it is not easy to use those bits directly. But all have the _PAGE_KERNEL_{RO/ROX/RW/RWX} set of flags. All we need it to compare two sets to know which bits are set or cleared. For instance, by comparing _PAGE_KERNEL_ROX and _PAGE_KERNEL_RO you know which bit gets cleared and which bit get set when changing exec permission.
CVE-2021-47623 2 Linux, Redhat 2 Linux Kernel, Rhel E4s 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/fixmap: Fix VM debug warning on unmap Unmapping a fixmap entry is done by calling __set_fixmap() with FIXMAP_PAGE_CLEAR as flags. Today, powerpc __set_fixmap() calls map_kernel_page(). map_kernel_page() is not happy when called a second time for the same page. WARNING: CPU: 0 PID: 1 at arch/powerpc/mm/pgtable.c:194 set_pte_at+0xc/0x1e8 CPU: 0 PID: 1 Comm: swapper Not tainted 5.16.0-rc3-s3k-dev-01993-g350ff07feb7d-dirty #682 NIP: c0017cd4 LR: c00187f0 CTR: 00000010 REGS: e1011d50 TRAP: 0700 Not tainted (5.16.0-rc3-s3k-dev-01993-g350ff07feb7d-dirty) MSR: 00029032 <EE,ME,IR,DR,RI> CR: 42000208 XER: 00000000 GPR00: c0165fec e1011e10 c14c0000 c0ee2550 ff800000 c0f3d000 00000000 c001686c GPR08: 00001000 b00045a9 00000001 c0f58460 c0f50000 00000000 c0007e10 00000000 GPR16: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 GPR24: 00000000 00000000 c0ee2550 00000000 c0f57000 00000ff8 00000000 ff800000 NIP [c0017cd4] set_pte_at+0xc/0x1e8 LR [c00187f0] map_kernel_page+0x9c/0x100 Call Trace: [e1011e10] [c0736c68] vsnprintf+0x358/0x6c8 (unreliable) [e1011e30] [c0165fec] __set_fixmap+0x30/0x44 [e1011e40] [c0c13bdc] early_iounmap+0x11c/0x170 [e1011e70] [c0c06cb0] ioremap_legacy_serial_console+0x88/0xc0 [e1011e90] [c0c03634] do_one_initcall+0x80/0x178 [e1011ef0] [c0c0385c] kernel_init_freeable+0xb4/0x250 [e1011f20] [c0007e34] kernel_init+0x24/0x140 [e1011f30] [c0016268] ret_from_kernel_thread+0x5c/0x64 Instruction dump: 7fe3fb78 48019689 80010014 7c630034 83e1000c 5463d97e 7c0803a6 38210010 4e800020 81250000 712a0001 41820008 <0fe00000> 9421ffe0 93e1001c 48000030 Implement unmap_kernel_page() which clears an existing pte.
CVE-2021-47622 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: Fix a deadlock in the error handler The following deadlock has been observed on a test setup: - All tags allocated - The SCSI error handler calls ufshcd_eh_host_reset_handler() - ufshcd_eh_host_reset_handler() queues work that calls ufshcd_err_handler() - ufshcd_err_handler() locks up as follows: Workqueue: ufs_eh_wq_0 ufshcd_err_handler.cfi_jt Call trace: __switch_to+0x298/0x5d8 __schedule+0x6cc/0xa94 schedule+0x12c/0x298 blk_mq_get_tag+0x210/0x480 __blk_mq_alloc_request+0x1c8/0x284 blk_get_request+0x74/0x134 ufshcd_exec_dev_cmd+0x68/0x640 ufshcd_verify_dev_init+0x68/0x35c ufshcd_probe_hba+0x12c/0x1cb8 ufshcd_host_reset_and_restore+0x88/0x254 ufshcd_reset_and_restore+0xd0/0x354 ufshcd_err_handler+0x408/0xc58 process_one_work+0x24c/0x66c worker_thread+0x3e8/0xa4c kthread+0x150/0x1b4 ret_from_fork+0x10/0x30 Fix this lockup by making ufshcd_exec_dev_cmd() allocate a reserved request.
CVE-2021-47620 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: refactor malicious adv data check Check for out-of-bound read was being performed at the end of while num_reports loop, and would fill journal with false positives. Added check to beginning of loop processing so that it doesn't get checked after ptr has been advanced.
CVE-2021-47612 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfc: fix segfault in nfc_genl_dump_devices_done When kmalloc in nfc_genl_dump_devices() fails then nfc_genl_dump_devices_done() segfaults as below KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 25 Comm: kworker/0:1 Not tainted 5.16.0-rc4-01180-g2a987e65025e-dirty #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-6.fc35 04/01/2014 Workqueue: events netlink_sock_destruct_work RIP: 0010:klist_iter_exit+0x26/0x80 Call Trace: <TASK> class_dev_iter_exit+0x15/0x20 nfc_genl_dump_devices_done+0x3b/0x50 genl_lock_done+0x84/0xd0 netlink_sock_destruct+0x8f/0x270 __sk_destruct+0x64/0x3b0 sk_destruct+0xa8/0xd0 __sk_free+0x2e8/0x3d0 sk_free+0x51/0x90 netlink_sock_destruct_work+0x1c/0x20 process_one_work+0x411/0x710 worker_thread+0x6fd/0xa80
CVE-2021-47606 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: netlink: af_netlink: Prevent empty skb by adding a check on len. Adding a check on len parameter to avoid empty skb. This prevents a division error in netem_enqueue function which is caused when skb->len=0 and skb->data_len=0 in the randomized corruption step as shown below. skb->data[prandom_u32() % skb_headlen(skb)] ^= 1<<(prandom_u32() % 8); Crash Report: [ 343.170349] netdevsim netdevsim0 netdevsim3: set [1, 0] type 2 family 0 port 6081 - 0 [ 343.216110] netem: version 1.3 [ 343.235841] divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI [ 343.236680] CPU: 3 PID: 4288 Comm: reproducer Not tainted 5.16.0-rc1+ [ 343.237569] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 [ 343.238707] RIP: 0010:netem_enqueue+0x1590/0x33c0 [sch_netem] [ 343.239499] Code: 89 85 58 ff ff ff e8 5f 5d e9 d3 48 8b b5 48 ff ff ff 8b 8d 50 ff ff ff 8b 85 58 ff ff ff 48 8b bd 70 ff ff ff 31 d2 2b 4f 74 <f7> f1 48 b8 00 00 00 00 00 fc ff df 49 01 d5 4c 89 e9 48 c1 e9 03 [ 343.241883] RSP: 0018:ffff88800bcd7368 EFLAGS: 00010246 [ 343.242589] RAX: 00000000ba7c0a9c RBX: 0000000000000001 RCX: 0000000000000000 [ 343.243542] RDX: 0000000000000000 RSI: ffff88800f8edb10 RDI: ffff88800f8eda40 [ 343.244474] RBP: ffff88800bcd7458 R08: 0000000000000000 R09: ffffffff94fb8445 [ 343.245403] R10: ffffffff94fb8336 R11: ffffffff94fb8445 R12: 0000000000000000 [ 343.246355] R13: ffff88800a5a7000 R14: ffff88800a5b5800 R15: 0000000000000020 [ 343.247291] FS: 00007fdde2bd7700(0000) GS:ffff888109780000(0000) knlGS:0000000000000000 [ 343.248350] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 343.249120] CR2: 00000000200000c0 CR3: 000000000ef4c000 CR4: 00000000000006e0 [ 343.250076] Call Trace: [ 343.250423] <TASK> [ 343.250713] ? memcpy+0x4d/0x60 [ 343.251162] ? netem_init+0xa0/0xa0 [sch_netem] [ 343.251795] ? __sanitizer_cov_trace_pc+0x21/0x60 [ 343.252443] netem_enqueue+0xe28/0x33c0 [sch_netem] [ 343.253102] ? stack_trace_save+0x87/0xb0 [ 343.253655] ? filter_irq_stacks+0xb0/0xb0 [ 343.254220] ? netem_init+0xa0/0xa0 [sch_netem] [ 343.254837] ? __kasan_check_write+0x14/0x20 [ 343.255418] ? _raw_spin_lock+0x88/0xd6 [ 343.255953] dev_qdisc_enqueue+0x50/0x180 [ 343.256508] __dev_queue_xmit+0x1a7e/0x3090 [ 343.257083] ? netdev_core_pick_tx+0x300/0x300 [ 343.257690] ? check_kcov_mode+0x10/0x40 [ 343.258219] ? _raw_spin_unlock_irqrestore+0x29/0x40 [ 343.258899] ? __kasan_init_slab_obj+0x24/0x30 [ 343.259529] ? setup_object.isra.71+0x23/0x90 [ 343.260121] ? new_slab+0x26e/0x4b0 [ 343.260609] ? kasan_poison+0x3a/0x50 [ 343.261118] ? kasan_unpoison+0x28/0x50 [ 343.261637] ? __kasan_slab_alloc+0x71/0x90 [ 343.262214] ? memcpy+0x4d/0x60 [ 343.262674] ? write_comp_data+0x2f/0x90 [ 343.263209] ? __kasan_check_write+0x14/0x20 [ 343.263802] ? __skb_clone+0x5d6/0x840 [ 343.264329] ? __sanitizer_cov_trace_pc+0x21/0x60 [ 343.264958] dev_queue_xmit+0x1c/0x20 [ 343.265470] netlink_deliver_tap+0x652/0x9c0 [ 343.266067] netlink_unicast+0x5a0/0x7f0 [ 343.266608] ? netlink_attachskb+0x860/0x860 [ 343.267183] ? __sanitizer_cov_trace_pc+0x21/0x60 [ 343.267820] ? write_comp_data+0x2f/0x90 [ 343.268367] netlink_sendmsg+0x922/0xe80 [ 343.268899] ? netlink_unicast+0x7f0/0x7f0 [ 343.269472] ? __sanitizer_cov_trace_pc+0x21/0x60 [ 343.270099] ? write_comp_data+0x2f/0x90 [ 343.270644] ? netlink_unicast+0x7f0/0x7f0 [ 343.271210] sock_sendmsg+0x155/0x190 [ 343.271721] ____sys_sendmsg+0x75f/0x8f0 [ 343.272262] ? kernel_sendmsg+0x60/0x60 [ 343.272788] ? write_comp_data+0x2f/0x90 [ 343.273332] ? write_comp_data+0x2f/0x90 [ 343.273869] ___sys_sendmsg+0x10f/0x190 [ 343.274405] ? sendmsg_copy_msghdr+0x80/0x80 [ 343.274984] ? slab_post_alloc_hook+0x70/0x230 [ 343.275597] ? futex_wait_setup+0x240/0x240 [ 343.276175] ? security_file_alloc+0x3e/0x170 [ 343.276779] ? write_comp_d ---truncated---
CVE-2021-47600 1 Linux 1 Linux Kernel 2025-12-10 7.8 High
In the Linux kernel, the following vulnerability has been resolved: dm btree remove: fix use after free in rebalance_children() Move dm_tm_unlock() after dm_tm_dec().