| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/ca0132: fixup buffer overrun at tuning_ctl_set()
tuning_ctl_set() might have buffer overrun at (X) if it didn't break
from loop by matching (A).
static int tuning_ctl_set(...)
{
for (i = 0; i < TUNING_CTLS_COUNT; i++)
(A) if (nid == ca0132_tuning_ctls[i].nid)
break;
snd_hda_power_up(...);
(X) dspio_set_param(..., ca0132_tuning_ctls[i].mid, ...);
snd_hda_power_down(...); ^
return 1;
}
We will get below error by cppcheck
sound/pci/hda/patch_ca0132.c:4229:2: note: After for loop, i has value 12
for (i = 0; i < TUNING_CTLS_COUNT; i++)
^
sound/pci/hda/patch_ca0132.c:4234:43: note: Array index out of bounds
dspio_set_param(codec, ca0132_tuning_ctls[i].mid, 0x20,
^
This patch cares non match case. |
| In the Linux kernel, the following vulnerability has been resolved:
dm flakey: fix a crash with invalid table line
This command will crash with NULL pointer dereference:
dmsetup create flakey --table \
"0 `blockdev --getsize /dev/ram0` flakey /dev/ram0 0 0 1 2 corrupt_bio_byte 512"
Fix the crash by checking if arg_name is non-NULL before comparing it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: dw_hdmi: fix connector access for scdc
Commit 5d844091f237 ("drm/scdc-helper: Pimp SCDC debugs") changed the scdc
interface to pick up an i2c adapter from a connector instead. However, in
the case of dw-hdmi, the wrong connector was being used to pass i2c adapter
information, since dw-hdmi's embedded connector structure is only populated
when the bridge attachment callback explicitly asks for it.
drm-meson is handling connector creation, so this won't happen, leading to
a NULL pointer dereference.
Fix it by having scdc functions access dw-hdmi's current connector pointer
instead, which is assigned during the bridge enablement stage.
[narmstrong: moved Fixes tag before first S-o-b and added Reported-by tag] |
| In the Linux kernel, the following vulnerability has been resolved:
smc: Fix use-after-free in tcp_write_timer_handler().
With Eric's ref tracker, syzbot finally found a repro for
use-after-free in tcp_write_timer_handler() by kernel TCP
sockets. [0]
If SMC creates a kernel socket in __smc_create(), the kernel
socket is supposed to be freed in smc_clcsock_release() by
calling sock_release() when we close() the parent SMC socket.
However, at the end of smc_clcsock_release(), the kernel
socket's sk_state might not be TCP_CLOSE. This means that
we have not called inet_csk_destroy_sock() in __tcp_close()
and have not stopped the TCP timers.
The kernel socket's TCP timers can be fired later, so we
need to hold a refcnt for net as we do for MPTCP subflows
in mptcp_subflow_create_socket().
[0]:
leaked reference.
sk_alloc (./include/net/net_namespace.h:335 net/core/sock.c:2108)
inet_create (net/ipv4/af_inet.c:319 net/ipv4/af_inet.c:244)
__sock_create (net/socket.c:1546)
smc_create (net/smc/af_smc.c:3269 net/smc/af_smc.c:3284)
__sock_create (net/socket.c:1546)
__sys_socket (net/socket.c:1634 net/socket.c:1618 net/socket.c:1661)
__x64_sys_socket (net/socket.c:1672)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
==================================================================
BUG: KASAN: slab-use-after-free in tcp_write_timer_handler (net/ipv4/tcp_timer.c:378 net/ipv4/tcp_timer.c:624 net/ipv4/tcp_timer.c:594)
Read of size 1 at addr ffff888052b65e0d by task syzrepro/18091
CPU: 0 PID: 18091 Comm: syzrepro Tainted: G W 6.3.0-rc4-01174-gb5d54eb5899a #7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.amzn2022.0.1 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:107)
print_report (mm/kasan/report.c:320 mm/kasan/report.c:430)
kasan_report (mm/kasan/report.c:538)
tcp_write_timer_handler (net/ipv4/tcp_timer.c:378 net/ipv4/tcp_timer.c:624 net/ipv4/tcp_timer.c:594)
tcp_write_timer (./include/linux/spinlock.h:390 net/ipv4/tcp_timer.c:643)
call_timer_fn (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/timer.h:127 kernel/time/timer.c:1701)
__run_timers.part.0 (kernel/time/timer.c:1752 kernel/time/timer.c:2022)
run_timer_softirq (kernel/time/timer.c:2037)
__do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:572)
__irq_exit_rcu (kernel/softirq.c:445 kernel/softirq.c:650)
irq_exit_rcu (kernel/softirq.c:664)
sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1107 (discriminator 14))
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Clean up integer overflow checking in map_user_pages()
The encode_dma() function has some validation on in_trans->size but it
would be more clear to move those checks to find_and_map_user_pages().
The encode_dma() had two checks:
if (in_trans->addr + in_trans->size < in_trans->addr || !in_trans->size)
return -EINVAL;
The in_trans->addr variable is the starting address. The in_trans->size
variable is the total size of the transfer. The transfer can occur in
parts and the resources->xferred_dma_size tracks how many bytes we have
already transferred.
This patch introduces a new variable "remaining" which represents the
amount we want to transfer (in_trans->size) minus the amount we have
already transferred (resources->xferred_dma_size).
I have modified the check for if in_trans->size is zero to instead check
if in_trans->size is less than resources->xferred_dma_size. If we have
already transferred more bytes than in_trans->size then there are negative
bytes remaining which doesn't make sense. If there are zero bytes
remaining to be copied, just return success.
The check in encode_dma() checked that "addr + size" could not overflow
and barring a driver bug that should work, but it's easier to check if
we do this in parts. First check that "in_trans->addr +
resources->xferred_dma_size" is safe. Then check that "xfer_start_addr +
remaining" is safe.
My final concern was that we are dealing with u64 values but on 32bit
systems the kmalloc() function will truncate the sizes to 32 bits. So
I calculated "total = in_trans->size + offset_in_page(xfer_start_addr);"
and returned -EINVAL if it were >= SIZE_MAX. This will not affect 64bit
systems. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: kill hooked chains to avoid loops on deduplicated compressed images
After heavily stressing EROFS with several images which include a
hand-crafted image of repeated patterns for more than 46 days, I found
two chains could be linked with each other almost simultaneously and
form a loop so that the entire loop won't be submitted. As a
consequence, the corresponding file pages will remain locked forever.
It can be _only_ observed on data-deduplicated compressed images.
For example, consider two chains with five pclusters in total:
Chain 1: 2->3->4->5 -- The tail pcluster is 5;
Chain 2: 5->1->2 -- The tail pcluster is 2.
Chain 2 could link to Chain 1 with pcluster 5; and Chain 1 could link
to Chain 2 at the same time with pcluster 2.
Since hooked chains are all linked locklessly now, I have no idea how
to simply avoid the race. Instead, let's avoid hooked chains completely
until I could work out a proper way to fix this and end users finally
tell us that it's needed to add it back.
Actually, this optimization can be found with multi-threaded workloads
(especially even more often on deduplicated compressed images), yet I'm
not sure about the overall system impacts of not having this compared
with implementation complexity. |
| In the Linux kernel, the following vulnerability has been resolved:
ipmi: fix use after free in _ipmi_destroy_user()
The intf_free() function frees the "intf" pointer so we cannot
dereference it again on the next line. |
| In the Linux kernel, the following vulnerability has been resolved:
net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks()
syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for
commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in
rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section
protected by lock_sock() without realizing that rds_send_xmit() might call
lock_sock().
We don't need to protect cancel_delayed_work_sync() using lock_sock(), for
even if rds_{send,recv}_worker() re-queued this work while __flush_work()
from cancel_delayed_work_sync() was waiting for this work to complete,
retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP
bit. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: vdso: fix NULL deference in vdso_join_timens() when vfork
Testing tools/testing/selftests/timens/vfork_exec.c got below
kernel log:
[ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020
[ 6.842255] Oops [#1]
[ 6.842871] Modules linked in:
[ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8
[ 6.845861] Hardware name: riscv-virtio,qemu (DT)
[ 6.848009] epc : vdso_join_timens+0xd2/0x110
[ 6.850097] ra : vdso_join_timens+0xd2/0x110
[ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0
[ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030
[ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40
[ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c
[ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000
[ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038
[ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000
[ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38
[ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e
[ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f
[ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00
[ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d
[ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a
[ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4
[ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0
[ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214
[ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4
[ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee
[ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48
[ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2
[ 6.877484] ---[ end trace 0000000000000000 ]---
This is because the mm->context.vdso_info is NULL in vfork case. From
another side, mm->context.vdso_info either points to vdso info
for RV64 or vdso info for compat, there's no need to bloat riscv's
mm_context_t, we can handle the difference when setup the additional
page for vdso. |
| In the Linux kernel, the following vulnerability has been resolved:
mailbox: zynq-ipi: fix error handling while device_register() fails
If device_register() fails, it has two issues:
1. The name allocated by dev_set_name() is leaked.
2. The parent of device is not NULL, device_unregister() is called
in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because
of removing not added device.
Call put_device() to give up the reference, so the name is freed in
kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes()
to avoid null-ptr-deref. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix deadlock due to mbcache entry corruption
When manipulating xattr blocks, we can deadlock infinitely looping
inside ext4_xattr_block_set() where we constantly keep finding xattr
block for reuse in mbcache but we are unable to reuse it because its
reference count is too big. This happens because cache entry for the
xattr block is marked as reusable (e_reusable set) although its
reference count is too big. When this inconsistency happens, this
inconsistent state is kept indefinitely and so ext4_xattr_block_set()
keeps retrying indefinitely.
The inconsistent state is caused by non-atomic update of e_reusable bit.
e_reusable is part of a bitfield and e_reusable update can race with
update of e_referenced bit in the same bitfield resulting in loss of one
of the updates. Fix the problem by using atomic bitops instead.
This bug has been around for many years, but it became *much* easier
to hit after commit 65f8b80053a1 ("ext4: fix race when reusing xattr
blocks"). |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix QP destroy to wait for all references dropped.
Delay QP destroy completion until all siw references to QP are
dropped. The calling RDMA core will free QP structure after
successful return from siw_qp_destroy() call, so siw must not
hold any remaining reference to the QP upon return.
A use-after-free was encountered in xfstest generic/460, while
testing NFSoRDMA. Here, after a TCP connection drop by peer,
the triggered siw_cm_work_handler got delayed until after
QP destroy call, referencing a QP which has already freed. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: fix memory leak in hns_roce_alloc_mr()
When hns_roce_mr_enable() failed in hns_roce_alloc_mr(), mr_key is not
released. Compiled test only. |
| In the Linux kernel, the following vulnerability has been resolved:
hwrng: geode - Fix PCI device refcount leak
for_each_pci_dev() is implemented by pci_get_device(). The comment of
pci_get_device() says that it will increase the reference count for the
returned pci_dev and also decrease the reference count for the input
pci_dev @from if it is not NULL.
If we break for_each_pci_dev() loop with pdev not NULL, we need to call
pci_dev_put() to decrease the reference count. We add a new struct
'amd_geode_priv' to record pointer of the pci_dev and membase, and then
add missing pci_dev_put() for the normal and error path. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: qcom: fix memory leak in error path
If for some reason the speedbin length is incorrect, then there is a
memory leak in the error path because we never free the speedbin buffer.
This commit fixes the error path to always free the speedbin buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix panic due to wrong pageattr of im->image
In the scenario where livepatch and kretfunc coexist, the pageattr of
im->image is rox after arch_prepare_bpf_trampoline in
bpf_trampoline_update, and then modify_fentry or register_fentry returns
-EAGAIN from bpf_tramp_ftrace_ops_func, the BPF_TRAMP_F_ORIG_STACK flag
will be configured, and arch_prepare_bpf_trampoline will be re-executed.
At this time, because the pageattr of im->image is rox,
arch_prepare_bpf_trampoline will read and write im->image, which causes
a fault. as follows:
insmod livepatch-sample.ko # samples/livepatch/livepatch-sample.c
bpftrace -e 'kretfunc:cmdline_proc_show {}'
BUG: unable to handle page fault for address: ffffffffa0206000
PGD 322d067 P4D 322d067 PUD 322e063 PMD 1297e067 PTE d428061
Oops: 0003 [#1] PREEMPT SMP PTI
CPU: 2 PID: 270 Comm: bpftrace Tainted: G E K 6.1.0 #5
RIP: 0010:arch_prepare_bpf_trampoline+0xed/0x8c0
RSP: 0018:ffffc90001083ad8 EFLAGS: 00010202
RAX: ffffffffa0206000 RBX: 0000000000000020 RCX: 0000000000000000
RDX: ffffffffa0206001 RSI: ffffffffa0206000 RDI: 0000000000000030
RBP: ffffc90001083b70 R08: 0000000000000066 R09: ffff88800f51b400
R10: 000000002e72c6e5 R11: 00000000d0a15080 R12: ffff8880110a68c8
R13: 0000000000000000 R14: ffff88800f51b400 R15: ffffffff814fec10
FS: 00007f87bc0dc780(0000) GS:ffff88803e600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffa0206000 CR3: 0000000010b70000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
bpf_trampoline_update+0x25a/0x6b0
__bpf_trampoline_link_prog+0x101/0x240
bpf_trampoline_link_prog+0x2d/0x50
bpf_tracing_prog_attach+0x24c/0x530
bpf_raw_tp_link_attach+0x73/0x1d0
__sys_bpf+0x100e/0x2570
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x5b/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
With this patch, when modify_fentry or register_fentry returns -EAGAIN
from bpf_tramp_ftrace_ops_func, the pageattr of im->image will be reset
to nx+rw. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix recursive locking direct_mutex in ftrace_modify_direct_caller
Naveen reported recursive locking of direct_mutex with sample
ftrace-direct-modify.ko:
[ 74.762406] WARNING: possible recursive locking detected
[ 74.762887] 6.0.0-rc6+ #33 Not tainted
[ 74.763216] --------------------------------------------
[ 74.763672] event-sample-fn/1084 is trying to acquire lock:
[ 74.764152] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
register_ftrace_function+0x1f/0x180
[ 74.764922]
[ 74.764922] but task is already holding lock:
[ 74.765421] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.766142]
[ 74.766142] other info that might help us debug this:
[ 74.766701] Possible unsafe locking scenario:
[ 74.766701]
[ 74.767216] CPU0
[ 74.767437] ----
[ 74.767656] lock(direct_mutex);
[ 74.767952] lock(direct_mutex);
[ 74.768245]
[ 74.768245] *** DEADLOCK ***
[ 74.768245]
[ 74.768750] May be due to missing lock nesting notation
[ 74.768750]
[ 74.769332] 1 lock held by event-sample-fn/1084:
[ 74.769731] #0: ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.770496]
[ 74.770496] stack backtrace:
[ 74.770884] CPU: 4 PID: 1084 Comm: event-sample-fn Not tainted ...
[ 74.771498] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
[ 74.772474] Call Trace:
[ 74.772696] <TASK>
[ 74.772896] dump_stack_lvl+0x44/0x5b
[ 74.773223] __lock_acquire.cold.74+0xac/0x2b7
[ 74.773616] lock_acquire+0xd2/0x310
[ 74.773936] ? register_ftrace_function+0x1f/0x180
[ 74.774357] ? lock_is_held_type+0xd8/0x130
[ 74.774744] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.775213] __mutex_lock+0x99/0x1010
[ 74.775536] ? register_ftrace_function+0x1f/0x180
[ 74.775954] ? slab_free_freelist_hook.isra.43+0x115/0x160
[ 74.776424] ? ftrace_set_hash+0x195/0x220
[ 74.776779] ? register_ftrace_function+0x1f/0x180
[ 74.777194] ? kfree+0x3e1/0x440
[ 74.777482] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.777941] ? __schedule+0xb40/0xb40
[ 74.778258] ? register_ftrace_function+0x1f/0x180
[ 74.778672] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.779128] register_ftrace_function+0x1f/0x180
[ 74.779527] ? ftrace_set_filter_ip+0x33/0x70
[ 74.779910] ? __schedule+0xb40/0xb40
[ 74.780231] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.780678] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.781147] ftrace_modify_direct_caller+0x5b/0x90
[ 74.781563] ? 0xffffffffa0201000
[ 74.781859] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.782309] modify_ftrace_direct+0x1b2/0x1f0
[ 74.782690] ? __schedule+0xb40/0xb40
[ 74.783014] ? simple_thread+0x2a/0xb0 [ftrace_direct_modify]
[ 74.783508] ? __schedule+0xb40/0xb40
[ 74.783832] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.784294] simple_thread+0x76/0xb0 [ftrace_direct_modify]
[ 74.784766] kthread+0xf5/0x120
[ 74.785052] ? kthread_complete_and_exit+0x20/0x20
[ 74.785464] ret_from_fork+0x22/0x30
[ 74.785781] </TASK>
Fix this by using register_ftrace_function_nolock in
ftrace_modify_direct_caller. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: hpsa: Fix possible memory leak in hpsa_init_one()
The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in
hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to
clean1 directly, which frees h and leaks the h->reply_map.
Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead
free h directly. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper()
As the comment of pci_get_domain_bus_and_slot() says, it returns
a PCI device with refcount incremented, so it doesn't need to
call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI
device needs to be put in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_typec: zero out stale pointers
`cros_typec_get_switch_handles` allocates four pointers when obtaining
type-c switch handles. These pointers are all freed if failing to obtain
any of them; therefore, pointers in `port` become stale. The stale
pointers eventually cause use-after-free or double free in later code
paths. Zeroing out all pointer fields after freeing to eliminate these
stale pointers. |