| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| ThinkPHP before 3.2.4, as used in Open Source BMS v1.1.1 and other products, allows Remote Command Execution via public//?s=index/\think\app/invokefunction&function=call_user_func_array&vars[0]=system&vars[1][]= followed by the command. |
| Nextcloud Groupfolders provides admin-configured folders shared by everyone in a group or team. Prior to 14.0.11, 15.3.12, 16.0.15, 17.0.14, 18.1.8, 19.1.8, and 20.1.2, a user with read-only permission can restore a file from the trash bin. This vulnerability is fixed in 14.0.11, 15.3.12, 16.0.15, 17.0.14, 18.1.8, 19.1.8, and 20.1.2. |
| Nextcloud Deck is a kanban style organization tool aimed at personal planning and project organization for teams integrated with Nextcloud. Prior to 1.12.7, 1.14.4, and 1.15.1, file extension can be spoofed by using RTLO characters, tricking users into download files with a different extension than what is displayed. This vulnerability is fixed in 1.12.7, 1.14.4, and 1.15.1. |
| Nextcloud Desktop is the desktop sync client for Nextcloud. Prior to 3.16.5, when trying to manually lock a file inside an end-to-end encrypted directory, the path of the file was sent to the server unencrypted, making it possible for administrators to see it in log files. This vulnerability is fixed in 3.16.5. |
| Array Networks ArrayOS AG before 9.4.5.9 allows command injection, as exploited in the wild in August through December 2025. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Craig Hewitt Seriously Simple Podcasting allows Stored XSS. This issue affects Seriously Simple Podcasting: from n/a through 3.9.0. |
| A vulnerability was determined in Ilevia EVE X1 Server up to 4.6.5.0.eden. Impacted is an unknown function of the file /ajax/php/leaf_search.php. This manipulation of the argument line causes command injection. The attack can be initiated remotely. A high degree of complexity is needed for the attack. The exploitability is considered difficult. The exploit has been publicly disclosed and may be utilized. Upgrading the affected component is recommended. The vendor confirms the issue and recommends: "We already know that issue and on most devices are already solved, also it’s not needed to open the port to outside world so we advised our customer to close it". |
| c-ares is an asynchronous resolver library. Versions 1.32.3 through 1.34.5 terminate a query after maximum attempts when using read_answer() and process_answer(), which can cause a Denial of Service. This issue is fixed in version 1.34.6. |
| The Litmus platform uses JWT for authentication and authorization, but the secret being used for signing the JWT is only 6 bytes long at its core, which makes it extremely easy to crack. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix system hang caused by cpu-clock usage
cpu-clock usage by the async-profiler tool can trigger a system hang,
which got bisected back to the following commit by Octavia Togami:
18dbcbfabfff ("perf: Fix the POLL_HUP delivery breakage") causes this issue
The root cause of the hang is that cpu-clock is a special type of SW
event which relies on hrtimers. The __perf_event_overflow() callback
is invoked from the hrtimer handler for cpu-clock events, and
__perf_event_overflow() tries to call cpu_clock_event_stop()
to stop the event, which calls htimer_cancel() to cancel the hrtimer.
But that's a recursion into the hrtimer code from a hrtimer handler,
which (unsurprisingly) deadlocks.
To fix this bug, use hrtimer_try_to_cancel() instead, and set
the PERF_HES_STOPPED flag, which causes perf_swevent_hrtimer()
to stop the event once it sees the PERF_HES_STOPPED flag.
[ mingo: Fixed the comments and improved the changelog. ] |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: ocelot: call dsa_tag_8021q_unregister() under rtnl_lock() on driver remove
When the tagging protocol in current use is "ocelot-8021q" and we unbind
the driver, we see this splat:
$ echo '0000:00:00.2' > /sys/bus/pci/drivers/fsl_enetc/unbind
mscc_felix 0000:00:00.5 swp0: left promiscuous mode
sja1105 spi2.0: Link is Down
DSA: tree 1 torn down
mscc_felix 0000:00:00.5 swp2: left promiscuous mode
sja1105 spi2.2: Link is Down
DSA: tree 3 torn down
fsl_enetc 0000:00:00.2 eno2: left promiscuous mode
mscc_felix 0000:00:00.5: Link is Down
------------[ cut here ]------------
RTNL: assertion failed at net/dsa/tag_8021q.c (409)
WARNING: CPU: 1 PID: 329 at net/dsa/tag_8021q.c:409 dsa_tag_8021q_unregister+0x12c/0x1a0
Modules linked in:
CPU: 1 PID: 329 Comm: bash Not tainted 6.5.0-rc3+ #771
pc : dsa_tag_8021q_unregister+0x12c/0x1a0
lr : dsa_tag_8021q_unregister+0x12c/0x1a0
Call trace:
dsa_tag_8021q_unregister+0x12c/0x1a0
felix_tag_8021q_teardown+0x130/0x150
felix_teardown+0x3c/0xd8
dsa_tree_teardown_switches+0xbc/0xe0
dsa_unregister_switch+0x168/0x260
felix_pci_remove+0x30/0x60
pci_device_remove+0x4c/0x100
device_release_driver_internal+0x188/0x288
device_links_unbind_consumers+0xfc/0x138
device_release_driver_internal+0xe0/0x288
device_driver_detach+0x24/0x38
unbind_store+0xd8/0x108
drv_attr_store+0x30/0x50
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
RTNL: assertion failed at net/8021q/vlan_core.c (376)
WARNING: CPU: 1 PID: 329 at net/8021q/vlan_core.c:376 vlan_vid_del+0x1b8/0x1f0
CPU: 1 PID: 329 Comm: bash Tainted: G W 6.5.0-rc3+ #771
pc : vlan_vid_del+0x1b8/0x1f0
lr : vlan_vid_del+0x1b8/0x1f0
dsa_tag_8021q_unregister+0x8c/0x1a0
felix_tag_8021q_teardown+0x130/0x150
felix_teardown+0x3c/0xd8
dsa_tree_teardown_switches+0xbc/0xe0
dsa_unregister_switch+0x168/0x260
felix_pci_remove+0x30/0x60
pci_device_remove+0x4c/0x100
device_release_driver_internal+0x188/0x288
device_links_unbind_consumers+0xfc/0x138
device_release_driver_internal+0xe0/0x288
device_driver_detach+0x24/0x38
unbind_store+0xd8/0x108
drv_attr_store+0x30/0x50
DSA: tree 0 torn down
This was somewhat not so easy to spot, because "ocelot-8021q" is not the
default tagging protocol, and thus, not everyone who tests the unbinding
path may have switched to it beforehand. The default
felix_tag_npi_teardown() does not require rtnl_lock() to be held. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8186: Fix use-after-free in driver remove path
When devm runs function in the "remove" path for a device it runs them
in the reverse order. That means that if you have parts of your driver
that aren't using devm or are using "roll your own" devm w/
devm_add_action_or_reset() you need to keep that in mind.
The mt8186 audio driver didn't quite get this right. Specifically, in
mt8186_init_clock() it called mt8186_audsys_clk_register() and then
went on to call a bunch of other devm function. The caller of
mt8186_init_clock() used devm_add_action_or_reset() to call
mt8186_deinit_clock() but, because of the intervening devm functions,
the order was wrong.
Specifically at probe time, the order was:
1. mt8186_audsys_clk_register()
2. afe_priv->clk = devm_kcalloc(...)
3. afe_priv->clk[i] = devm_clk_get(...)
At remove time, the order (which should have been 3, 2, 1) was:
1. mt8186_audsys_clk_unregister()
3. Free all of afe_priv->clk[i]
2. Free afe_priv->clk
The above seemed to be causing a use-after-free. Luckily, it's easy to
fix this by simply using devm more correctly. Let's move the
devm_add_action_or_reset() to the right place. In addition to fixing
the use-after-free, code inspection shows that this fixes a leak
(missing call to mt8186_audsys_clk_unregister()) that would have
happened if any of the syscon_regmap_lookup_by_phandle() calls in
mt8186_init_clock() had failed. |
| In the Linux kernel, the following vulnerability has been resolved:
usb-storage: alauda: Fix uninit-value in alauda_check_media()
Syzbot got KMSAN to complain about access to an uninitialized value in
the alauda subdriver of usb-storage:
BUG: KMSAN: uninit-value in alauda_transport+0x462/0x57f0
drivers/usb/storage/alauda.c:1137
CPU: 0 PID: 12279 Comm: usb-storage Not tainted 5.3.0-rc7+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x191/0x1f0 lib/dump_stack.c:113
kmsan_report+0x13a/0x2b0 mm/kmsan/kmsan_report.c:108
__msan_warning+0x73/0xe0 mm/kmsan/kmsan_instr.c:250
alauda_check_media+0x344/0x3310 drivers/usb/storage/alauda.c:460
The problem is that alauda_check_media() doesn't verify that its USB
transfer succeeded before trying to use the received data. What
should happen if the transfer fails isn't entirely clear, but a
reasonably conservative approach is to pretend that no media is
present.
A similar problem exists in a usb_stor_dbg() call in
alauda_get_media_status(). In this case, when an error occurs the
call is redundant, because usb_stor_ctrl_transfer() already will print
a debugging message.
Finally, unrelated to the uninitialized memory access, is the fact
that alauda_check_media() performs DMA to a buffer on the stack.
Fortunately usb-storage provides a general purpose DMA-able buffer for
uses like this. We'll use it instead. |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: reject negative ifindex
Recent changes in net-next (commit 759ab1edb56c ("net: store netdevs
in an xarray")) refactored the handling of pre-assigned ifindexes
and let syzbot surface a latent problem in ovs. ovs does not validate
ifindex, making it possible to create netdev ports with negative
ifindex values. It's easy to repro with YNL:
$ ./cli.py --spec netlink/specs/ovs_datapath.yaml \
--do new \
--json '{"upcall-pid": 1, "name":"my-dp"}'
$ ./cli.py --spec netlink/specs/ovs_vport.yaml \
--do new \
--json '{"upcall-pid": "00000001", "name": "some-port0", "dp-ifindex":3,"ifindex":4294901760,"type":2}'
$ ip link show
-65536: some-port0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
link/ether 7a:48:21:ad:0b:fb brd ff:ff:ff:ff:ff:ff
...
Validate the inputs. Now the second command correctly returns:
$ ./cli.py --spec netlink/specs/ovs_vport.yaml \
--do new \
--json '{"upcall-pid": "00000001", "name": "some-port0", "dp-ifindex":3,"ifindex":4294901760,"type":2}'
lib.ynl.NlError: Netlink error: Numerical result out of range
nl_len = 108 (92) nl_flags = 0x300 nl_type = 2
error: -34 extack: {'msg': 'integer out of range', 'unknown': [[type:4 len:36] b'\x0c\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x03\x00\xff\xff\xff\x7f\x00\x00\x00\x00\x08\x00\x01\x00\x08\x00\x00\x00'], 'bad-attr': '.ifindex'}
Accept 0 since it used to be silently ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix null-ptr-deref in raid10_sync_request
init_resync() inits mempool and sets conf->have_replacemnt at the beginning
of sync, close_sync() frees the mempool when sync is completed.
After [1] recovery might be skipped and init_resync() is called but
close_sync() is not. null-ptr-deref occurs with r10bio->dev[i].repl_bio.
The following is one way to reproduce the issue.
1) create a array, wait for resync to complete, mddev->recovery_cp is set
to MaxSector.
2) recovery is woken and it is skipped. conf->have_replacement is set to
0 in init_resync(). close_sync() not called.
3) some io errors and rdev A is set to WantReplacement.
4) a new device is added and set to A's replacement.
5) recovery is woken, A have replacement, but conf->have_replacemnt is
0. r10bio->dev[i].repl_bio will not be alloced and null-ptr-deref
occurs.
Fix it by not calling init_resync() if recovery skipped.
[1] commit 7e83ccbecd60 ("md/raid10: Allow skipping recovery when clean arrays are assembled") |
| In the Linux kernel, the following vulnerability has been resolved:
block/rq_qos: protect rq_qos apis with a new lock
commit 50e34d78815e ("block: disable the elevator int del_gendisk")
move rq_qos_exit() from disk_release() to del_gendisk(), this will
introduce some problems:
1) If rq_qos_add() is triggered by enabling iocost/iolatency through
cgroupfs, then it can concurrent with del_gendisk(), it's not safe to
write 'q->rq_qos' concurrently.
2) Activate cgroup policy that is relied on rq_qos will call
rq_qos_add() and blkcg_activate_policy(), and if rq_qos_exit() is
called in the middle, null-ptr-dereference will be triggered in
blkcg_activate_policy().
3) blkg_conf_open_bdev() can call blkdev_get_no_open() first to find the
disk, then if rq_qos_exit() from del_gendisk() is done before
rq_qos_add(), then memory will be leaked.
This patch add a new disk level mutex 'rq_qos_mutex':
1) The lock will protect rq_qos_exit() directly.
2) For wbt that doesn't relied on blk-cgroup, rq_qos_add() can only be
called from disk initialization for now because wbt can't be
destructed until rq_qos_exit(), so it's safe not to protect wbt for
now. Hoever, in case that rq_qos dynamically destruction is supported
in the furture, this patch also protect rq_qos_add() from wbt_init()
directly, this is enough because blk-sysfs already synchronize
writers with disk removal.
3) For iocost and iolatency, in order to synchronize disk removal and
cgroup configuration, the lock is held after blkdev_get_no_open()
from blkg_conf_open_bdev(), and is released in blkg_conf_exit().
In order to fix the above memory leak, disk_live() is checked after
holding the new lock. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix dropping valid root bus resources with .end = zero
On r8a7791/koelsch:
kmemleak: 1 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
# cat /sys/kernel/debug/kmemleak
unreferenced object 0xc3a34e00 (size 64):
comm "swapper/0", pid 1, jiffies 4294937460 (age 199.080s)
hex dump (first 32 bytes):
b4 5d 81 f0 b4 5d 81 f0 c0 b0 a2 c3 00 00 00 00 .]...]..........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<fe3aa979>] __kmalloc+0xf0/0x140
[<34bd6bc0>] resource_list_create_entry+0x18/0x38
[<767046bc>] pci_add_resource_offset+0x20/0x68
[<b3f3edf2>] devm_of_pci_get_host_bridge_resources.constprop.0+0xb0/0x390
When coalescing two resources for a contiguous aperture, the second
resource is enlarged to cover the full contiguous range, while the first
resource is marked invalid. This invalidation is done by clearing the
flags, start, and end members.
When adding the initial resources to the bus later, invalid resources are
skipped. Unfortunately, the check for an invalid resource considers only
the end member, causing false positives.
E.g. on r8a7791/koelsch, root bus resource 0 ("bus 00") is skipped, and no
longer registered with pci_bus_insert_busn_res() (causing the memory leak),
nor printed:
pci-rcar-gen2 ee090000.pci: host bridge /soc/pci@ee090000 ranges:
pci-rcar-gen2 ee090000.pci: MEM 0x00ee080000..0x00ee08ffff -> 0x00ee080000
pci-rcar-gen2 ee090000.pci: PCI: revision 11
pci-rcar-gen2 ee090000.pci: PCI host bridge to bus 0000:00
-pci_bus 0000:00: root bus resource [bus 00]
pci_bus 0000:00: root bus resource [mem 0xee080000-0xee08ffff]
Fix this by only skipping resources where all of the flags, start, and end
members are zero. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix rbtree traversal bug in ext4_mb_use_preallocated
During allocations, while looking for preallocations(PA) in the per
inode rbtree, we can't do a direct traversal of the tree because
ext4_mb_discard_group_preallocation() can paralelly mark the pa deleted
and that can cause direct traversal to skip some entries. This was
leading to a BUG_ON() being hit [1] when we missed a PA that could satisfy
our request and ultimately tried to create a new PA that would overlap
with the missed one.
To makes sure we handle that case while still keeping the performance of
the rbtree, we make use of the fact that the only pa that could possibly
overlap the original goal start is the one that satisfies the below
conditions:
1. It must have it's logical start immediately to the left of
(ie less than) original logical start.
2. It must not be deleted
To find this pa we use the following traversal method:
1. Descend into the rbtree normally to find the immediate neighboring
PA. Here we keep descending irrespective of if the PA is deleted or if
it overlaps with our request etc. The goal is to find an immediately
adjacent PA.
2. If the found PA is on right of original goal, use rb_prev() to find
the left adjacent PA.
3. Check if this PA is deleted and keep moving left with rb_prev() until
a non deleted PA is found.
4. This is the PA we are looking for. Now we can check if it can satisfy
the original request and proceed accordingly.
This approach also takes care of having deleted PAs in the tree.
(While we are at it, also fix a possible overflow bug in calculating the
end of a PA)
[1] https://lore.kernel.org/linux-ext4/CA+G9fYv2FRpLqBZf34ZinR8bU2_ZRAUOjKAD3+tKRFaEQHtt8Q@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Cap MSIX used to online CPUs + 1
The irdma driver can use a maximum number of msix vectors equal
to num_online_cpus() + 1 and the kernel warning stack below is shown
if that number is exceeded.
The kernel throws a warning as the driver tries to update the affinity
hint with a CPU mask greater than the max CPU IDs. Fix this by capping
the MSIX vectors to num_online_cpus() + 1.
WARNING: CPU: 7 PID: 23655 at include/linux/cpumask.h:106 irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma]
RIP: 0010:irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma]
Call Trace:
irdma_rt_init_hw+0xa62/0x1290 [irdma]
? irdma_alloc_local_mac_entry+0x1a0/0x1a0 [irdma]
? __is_kernel_percpu_address+0x63/0x310
? rcu_read_lock_held_common+0xe/0xb0
? irdma_lan_unregister_qset+0x280/0x280 [irdma]
? irdma_request_reset+0x80/0x80 [irdma]
? ice_get_qos_params+0x84/0x390 [ice]
irdma_probe+0xa40/0xfc0 [irdma]
? rcu_read_lock_bh_held+0xd0/0xd0
? irdma_remove+0x140/0x140 [irdma]
? rcu_read_lock_sched_held+0x62/0xe0
? down_write+0x187/0x3d0
? auxiliary_match_id+0xf0/0x1a0
? irdma_remove+0x140/0x140 [irdma]
auxiliary_bus_probe+0xa6/0x100
__driver_probe_device+0x4a4/0xd50
? __device_attach_driver+0x2c0/0x2c0
driver_probe_device+0x4a/0x110
__driver_attach+0x1aa/0x350
bus_for_each_dev+0x11d/0x1b0
? subsys_dev_iter_init+0xe0/0xe0
bus_add_driver+0x3b1/0x610
driver_register+0x18e/0x410
? 0xffffffffc0b88000
irdma_init_module+0x50/0xaa [irdma]
do_one_initcall+0x103/0x5f0
? perf_trace_initcall_level+0x420/0x420
? do_init_module+0x4e/0x700
? __kasan_kmalloc+0x7d/0xa0
? kmem_cache_alloc_trace+0x188/0x2b0
? kasan_unpoison+0x21/0x50
do_init_module+0x1d1/0x700
load_module+0x3867/0x5260
? layout_and_allocate+0x3990/0x3990
? rcu_read_lock_held_common+0xe/0xb0
? rcu_read_lock_sched_held+0x62/0xe0
? rcu_read_lock_bh_held+0xd0/0xd0
? __vmalloc_node_range+0x46b/0x890
? lock_release+0x5c8/0xba0
? alloc_vm_area+0x120/0x120
? selinux_kernel_module_from_file+0x2a5/0x300
? __inode_security_revalidate+0xf0/0xf0
? __do_sys_init_module+0x1db/0x260
__do_sys_init_module+0x1db/0x260
? load_module+0x5260/0x5260
? do_syscall_64+0x22/0x450
do_syscall_64+0xa5/0x450
entry_SYSCALL_64_after_hwframe+0x66/0xdb |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: Fix uninitialized number of lanes
It is not possible to set the number of lanes when setting link modes
using the legacy IOCTL ethtool interface. Since 'struct
ethtool_link_ksettings' is not initialized in this path, drivers receive
an uninitialized number of lanes in 'struct
ethtool_link_ksettings::lanes'.
When this information is later queried from drivers, it results in the
ethtool code making decisions based on uninitialized memory, leading to
the following KMSAN splat [1]. In practice, this most likely only
happens with the tun driver that simply returns whatever it got in the
set operation.
As far as I can tell, this uninitialized memory is not leaked to user
space thanks to the 'ethtool_ops->cap_link_lanes_supported' check in
linkmodes_prepare_data().
Fix by initializing the structure in the IOCTL path. Did not find any
more call sites that pass an uninitialized structure when calling
'ethtool_ops::set_link_ksettings()'.
[1]
BUG: KMSAN: uninit-value in ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline]
BUG: KMSAN: uninit-value in ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333
ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline]
ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333
ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640
genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline]
genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065
netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0xa24/0xe40 net/socket.c:2501
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555
__sys_sendmsg net/socket.c:2584 [inline]
__do_sys_sendmsg net/socket.c:2593 [inline]
__se_sys_sendmsg net/socket.c:2591 [inline]
__x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was stored to memory at:
tun_get_link_ksettings+0x37/0x60 drivers/net/tun.c:3544
__ethtool_get_link_ksettings+0x17b/0x260 net/ethtool/ioctl.c:441
ethnl_set_linkmodes+0xee/0x19d0 net/ethtool/linkmodes.c:327
ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640
genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline]
genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065
netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0xa24/0xe40 net/socket.c:2501
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555
__sys_sendmsg net/socket.c:2584 [inline]
__do_sys_sendmsg net/socket.c:2593 [inline]
__se_sys_sendmsg net/socket.c:2591 [inline]
__x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was stored to memory at:
tun_set_link_ksettings+0x37/0x60 drivers/net/tun.c:3553
ethtool_set_link_ksettings+0x600/0x690 net/ethtool/ioctl.c:609
__dev_ethtool net/ethtool/ioctl.c:3024 [inline]
dev_ethtool+0x1db9/0x2a70 net/ethtool/ioctl.c:3078
dev_ioctl+0xb07/0x1270 net/core/dev_ioctl.c:524
sock_do_ioctl+0x295/0x540 net/socket.c:1213
sock_i
---truncated--- |