Search Results (323517 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50447 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: Fix crash on hci_create_cis_sync When attempting to connect multiple ISO sockets without using DEFER_SETUP may result in the following crash: BUG: KASAN: null-ptr-deref in hci_create_cis_sync+0x18b/0x2b0 Read of size 2 at addr 0000000000000036 by task kworker/u3:1/50 CPU: 0 PID: 50 Comm: kworker/u3:1 Not tainted 6.0.0-rc7-02243-gb84a13ff4eda #4373 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-1.fc36 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x19/0x27 kasan_report+0xbc/0xf0 ? hci_create_cis_sync+0x18b/0x2b0 hci_create_cis_sync+0x18b/0x2b0 ? get_link_mode+0xd0/0xd0 ? __ww_mutex_lock_slowpath+0x10/0x10 ? mutex_lock+0xe0/0xe0 ? get_link_mode+0xd0/0xd0 hci_cmd_sync_work+0x111/0x190 process_one_work+0x427/0x650 worker_thread+0x87/0x750 ? process_one_work+0x650/0x650 kthread+0x14e/0x180 ? kthread_exit+0x50/0x50 ret_from_fork+0x22/0x30 </TASK>
CVE-2022-50446 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARC: mm: fix leakage of memory allocated for PTE Since commit d9820ff ("ARC: mm: switch pgtable_t back to struct page *") a memory leakage problem occurs. Memory allocated for page table entries not released during process termination. This issue can be reproduced by a small program that allocates a large amount of memory. After several runs, you'll see that the amount of free memory has reduced and will continue to reduce after each run. All ARC CPUs are effected by this issue. The issue was introduced since the kernel stable release v5.15-rc1. As described in commit d9820ff after switch pgtable_t back to struct page *, a pointer to "struct page" and appropriate functions are used to allocate and free a memory page for PTEs, but the pmd_pgtable macro hasn't changed and returns the direct virtual address from the PMD (PGD) entry. Than this address used as a parameter in the __pte_free() and as a result this function couldn't release memory page allocated for PTEs. Fix this issue by changing the pmd_pgtable macro and returning pointer to struct page.
CVE-2022-50444 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: tegra20: Fix refcount leak in tegra20_clock_init of_find_matching_node() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2022-50441 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Lag, fix failure to cancel delayed bond work Commit 0d4e8ed139d8 ("net/mlx5: Lag, avoid lockdep warnings") accidentally removed a call to cancel delayed bond work thus it may cause queued delay to expire and fall on an already destroyed work queue. Fix by restoring the call cancel_delayed_work_sync() before destroying the workqueue. This prevents call trace such as this: [ 329.230417] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 329.231444] #PF: supervisor write access in kernel mode [ 329.232233] #PF: error_code(0x0002) - not-present page [ 329.233007] PGD 0 P4D 0 [ 329.233476] Oops: 0002 [#1] SMP [ 329.234012] CPU: 5 PID: 145 Comm: kworker/u20:4 Tainted: G OE 6.0.0-rc5_mlnx #1 [ 329.235282] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 329.236868] Workqueue: mlx5_cmd_0000:08:00.1 cmd_work_handler [mlx5_core] [ 329.237886] RIP: 0010:_raw_spin_lock+0xc/0x20 [ 329.238585] Code: f0 0f b1 17 75 02 f3 c3 89 c6 e9 6f 3c 5f ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00 31 c0 ba 01 00 00 00 <f0> 0f b1 17 75 02 f3 c3 89 c6 e9 45 3c 5f ff 0f 1f 44 00 00 0f 1f [ 329.241156] RSP: 0018:ffffc900001b0e98 EFLAGS: 00010046 [ 329.241940] RAX: 0000000000000000 RBX: ffffffff82374ae0 RCX: 0000000000000000 [ 329.242954] RDX: 0000000000000001 RSI: 0000000000000014 RDI: 0000000000000000 [ 329.243974] RBP: ffff888106ccf000 R08: ffff8881004000c8 R09: ffff888100400000 [ 329.244990] R10: 0000000000000000 R11: ffffffff826669f8 R12: 0000000000002000 [ 329.246009] R13: 0000000000000005 R14: ffff888100aa7ce0 R15: ffff88852ca80000 [ 329.247030] FS: 0000000000000000(0000) GS:ffff88852ca80000(0000) knlGS:0000000000000000 [ 329.248260] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 329.249111] CR2: 0000000000000000 CR3: 000000016d675001 CR4: 0000000000770ee0 [ 329.250133] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 329.251152] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 329.252176] PKRU: 55555554
CVE-2022-50435 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid crash when inline data creation follows DIO write When inode is created and written to using direct IO, there is nothing to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets truncated later to say 1 byte and written using normal write, we will try to store the data as inline data. This confuses the code later because the inode now has both normal block and inline data allocated and the confusion manifests for example as: kernel BUG at fs/ext4/inode.c:2721! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 RIP: 0010:ext4_writepages+0x363d/0x3660 RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293 RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180 RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000 RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128 R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001 FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0 Call Trace: <TASK> do_writepages+0x397/0x640 filemap_fdatawrite_wbc+0x151/0x1b0 file_write_and_wait_range+0x1c9/0x2b0 ext4_sync_file+0x19e/0xa00 vfs_fsync_range+0x17b/0x190 ext4_buffered_write_iter+0x488/0x530 ext4_file_write_iter+0x449/0x1b90 vfs_write+0xbcd/0xf40 ksys_write+0x198/0x2c0 __x64_sys_write+0x7b/0x90 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing direct IO write to a file.
CVE-2022-50434 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix possible memleak when register 'hctx' failed There's issue as follows when do fault injection test: unreferenced object 0xffff888132a9f400 (size 512): comm "insmod", pid 308021, jiffies 4324277909 (age 509.733s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 08 f4 a9 32 81 88 ff ff ...........2.... 08 f4 a9 32 81 88 ff ff 00 00 00 00 00 00 00 00 ...2............ backtrace: [<00000000e8952bb4>] kmalloc_node_trace+0x22/0xa0 [<00000000f9980e0f>] blk_mq_alloc_and_init_hctx+0x3f1/0x7e0 [<000000002e719efa>] blk_mq_realloc_hw_ctxs+0x1e6/0x230 [<000000004f1fda40>] blk_mq_init_allocated_queue+0x27e/0x910 [<00000000287123ec>] __blk_mq_alloc_disk+0x67/0xf0 [<00000000a2a34657>] 0xffffffffa2ad310f [<00000000b173f718>] 0xffffffffa2af824a [<0000000095a1dabb>] do_one_initcall+0x87/0x2a0 [<00000000f32fdf93>] do_init_module+0xdf/0x320 [<00000000cbe8541e>] load_module+0x3006/0x3390 [<0000000069ed1bdb>] __do_sys_finit_module+0x113/0x1b0 [<00000000a1a29ae8>] do_syscall_64+0x35/0x80 [<000000009cd878b0>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fault injection context as follows: kobject_add blk_mq_register_hctx blk_mq_sysfs_register blk_register_queue device_add_disk null_add_dev.part.0 [null_blk] As 'blk_mq_register_hctx' may already add some objects when failed halfway, but there isn't do fallback, caller don't know which objects add failed. To solve above issue just do fallback when add objects failed halfway in 'blk_mq_register_hctx'.
CVE-2022-50431 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: aoa: i2sbus: fix possible memory leak in i2sbus_add_dev() dev_set_name() in soundbus_add_one() allocates memory for name, it need be freed when of_device_register() fails, call soundbus_dev_put() to give up the reference that hold in device_initialize(), so that it can be freed in kobject_cleanup() when the refcount hit to 0. And other resources are also freed in i2sbus_release_dev(), so it can return 0 directly.
CVE-2022-50430 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mmc: vub300: fix warning - do not call blocking ops when !TASK_RUNNING vub300_enable_sdio_irq() works with mutex and need TASK_RUNNING here. Ensure that we mark current as TASK_RUNNING for sleepable context. [ 77.554641] do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff92a72c1d>] sdio_irq_thread+0x17d/0x5b0 [ 77.554652] WARNING: CPU: 2 PID: 1983 at kernel/sched/core.c:9813 __might_sleep+0x116/0x160 [ 77.554905] CPU: 2 PID: 1983 Comm: ksdioirqd/mmc1 Tainted: G OE 6.1.0-rc5 #1 [ 77.554910] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, BIOS BECFL357.86A.0081.2020.0504.1834 05/04/2020 [ 77.554912] RIP: 0010:__might_sleep+0x116/0x160 [ 77.554920] RSP: 0018:ffff888107b7fdb8 EFLAGS: 00010282 [ 77.554923] RAX: 0000000000000000 RBX: ffff888118c1b740 RCX: 0000000000000000 [ 77.554926] RDX: 0000000000000001 RSI: 0000000000000004 RDI: ffffed1020f6ffa9 [ 77.554928] RBP: ffff888107b7fde0 R08: 0000000000000001 R09: ffffed1043ea60ba [ 77.554930] R10: ffff88821f5305cb R11: ffffed1043ea60b9 R12: ffffffff93aa3a60 [ 77.554932] R13: 000000000000011b R14: 7fffffffffffffff R15: ffffffffc0558660 [ 77.554934] FS: 0000000000000000(0000) GS:ffff88821f500000(0000) knlGS:0000000000000000 [ 77.554937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 77.554939] CR2: 00007f8a44010d68 CR3: 000000024421a003 CR4: 00000000003706e0 [ 77.554942] Call Trace: [ 77.554944] <TASK> [ 77.554952] mutex_lock+0x78/0xf0 [ 77.554973] vub300_enable_sdio_irq+0x103/0x3c0 [vub300] [ 77.554981] sdio_irq_thread+0x25c/0x5b0 [ 77.555006] kthread+0x2b8/0x370 [ 77.555017] ret_from_fork+0x1f/0x30 [ 77.555023] </TASK> [ 77.555025] ---[ end trace 0000000000000000 ]---
CVE-2022-50428 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix off-by-one errors in fast-commit block filling Due to several different off-by-one errors, or perhaps due to a late change in design that wasn't fully reflected in the code that was actually merged, there are several very strange constraints on how fast-commit blocks are filled with tlv entries: - tlvs must start at least 10 bytes before the end of the block, even though the minimum tlv length is 8. Otherwise, the replay code will ignore them. (BUG: ext4_fc_reserve_space() could violate this requirement if called with a len of blocksize - 9 or blocksize - 8. Fortunately, this doesn't seem to happen currently.) - tlvs must end at least 1 byte before the end of the block. Otherwise the replay code will consider them to be invalid. This quirk contributed to a bug (fixed by an earlier commit) where uninitialized memory was being leaked to disk in the last byte of blocks. Also, strangely these constraints don't apply to the replay code in e2fsprogs, which will accept any tlvs in the blocks (with no bounds checks at all, but that is a separate issue...). Given that this all seems to be a bug, let's fix it by just filling blocks with tlv entries in the natural way. Note that old kernels will be unable to replay fast-commit journals created by kernels that have this commit.
CVE-2022-50427 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: ac97: fix possible memory leak in snd_ac97_dev_register() If device_register() fails in snd_ac97_dev_register(), it should call put_device() to give up reference, or the name allocated in dev_set_name() is leaked.
CVE-2022-50426 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: remoteproc: imx_dsp_rproc: Add mutex protection for workqueue The workqueue may execute late even after remoteproc is stopped or stopping, some resources (rpmsg device and endpoint) have been released in rproc_stop_subdevices(), then rproc_vq_interrupt() accessing these resources will cause kennel dump. Call trace: virtqueue_add_split+0x1ac/0x560 virtqueue_add_inbuf+0x4c/0x60 rpmsg_recv_done+0x15c/0x294 vring_interrupt+0x6c/0xa4 rproc_vq_interrupt+0x30/0x50 imx_dsp_rproc_vq_work+0x24/0x40 [imx_dsp_rproc] process_one_work+0x1d0/0x354 worker_thread+0x13c/0x470 kthread+0x154/0x160 ret_from_fork+0x10/0x20 Add mutex protection in imx_dsp_rproc_vq_work(), if the state is not running, then just skip calling rproc_vq_interrupt(). Also the flush workqueue operation can't be added in rproc stop for the same reason. The call sequence is rproc_shutdown -> rproc_stop ->rproc_stop_subdevices ->rproc->ops->stop() ->imx_dsp_rproc_stop ->flush_work -> rproc_vq_interrupt The resource needed by rproc_vq_interrupt has been released in rproc_stop_subdevices, so flush_work is not safe to be called in imx_dsp_rproc_stop.
CVE-2022-50425 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly When an extended state component is not present in fpstate, but in init state, the function copies from init_fpstate via copy_feature(). But, dynamic states are not present in init_fpstate because of all-zeros init states. Then retrieving them from init_fpstate will explode like this: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... RIP: 0010:memcpy_erms+0x6/0x10 ? __copy_xstate_to_uabi_buf+0x381/0x870 fpu_copy_guest_fpstate_to_uabi+0x28/0x80 kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm] ? __this_cpu_preempt_check+0x13/0x20 ? vmx_vcpu_put+0x2e/0x260 [kvm_intel] kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? __fget_light+0xd4/0x130 __x64_sys_ioctl+0xe3/0x910 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x27/0x50 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Adjust the 'mask' to zero out the userspace buffer for the features that are not available both from fpstate and from init_fpstate. The dynamic features depend on the compacted XSAVE format. Ensure it is enabled before reading XCOMP_BV in init_fpstate.
CVE-2022-50440 1 Linux 1 Linux Kernel 2025-10-02 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate the box size for the snooped cursor Invalid userspace dma surface copies could potentially overflow the memcpy from the surface to the snooped image leading to crashes. To fix it the dimensions of the copybox have to be validated against the expected size of the snooped cursor.
CVE-2020-36852 2 Custom Searchable Data Entry System Project, Wordpress 2 Custom Searchable Data Entry System, Wordpress 2025-10-02 9.1 Critical
The Custom Searchable Data Entry System plugin for WordPress is vulnerable to unauthenticated database wiping in versions up to, and including 1.7.1, due to a missing capability check and lack of sufficient validation on the ghazale_sds_delete_entries_table_row() function. This makes it possible for unauthenticated attackers to completely wipe database tables such as wp_users.
CVE-2025-23293 1 Nvidia 1 License System 2025-10-02 8.7 High
NVIDIA Delegated Licensing Service for all appliance platforms contains a vulnerability where an User/Attacker may cause an authorized action. A successful exploit of this vulnerability may lead to information disclosure.
CVE-2023-53483 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ACPI: processor: Check for null return of devm_kzalloc() in fch_misc_setup() devm_kzalloc() may fail, clk_data->name might be NULL and will cause a NULL pointer dereference later. [ rjw: Subject and changelog edits ]
CVE-2023-53457 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: FS: JFS: Fix null-ptr-deref Read in txBegin Syzkaller reported an issue where txBegin may be called on a superblock in a read-only mounted filesystem which leads to NULL pointer deref. This could be solved by checking if the filesystem is read-only before calling txBegin, and returning with appropiate error code.
CVE-2025-9993 2 D3rd4v1d, Wordpress 2 Bei Fen, Wordpress 2025-10-02 8.1 High
The Bei Fen – WordPress Backup Plugin plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 1.4.2 via the 'task'. This makes it possible for authenticated attackers, with Subscriber-level access and above, to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included. This only affects instances running PHP 7.1 or older.
CVE-2022-50442 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Validate buffer length while parsing index indx_read is called when we have some NTFS directory operations that need more information from the index buffers. This adds a sanity check to make sure the returned index buffer length is legit, or we may have some out-of-bound memory accesses. [ 560.897595] BUG: KASAN: slab-out-of-bounds in hdr_find_e.isra.0+0x10c/0x320 [ 560.898321] Read of size 2 at addr ffff888009497238 by task exp/245 [ 560.898760] [ 560.899129] CPU: 0 PID: 245 Comm: exp Not tainted 6.0.0-rc6 #37 [ 560.899505] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 560.900170] Call Trace: [ 560.900407] <TASK> [ 560.900732] dump_stack_lvl+0x49/0x63 [ 560.901108] print_report.cold+0xf5/0x689 [ 560.901395] ? hdr_find_e.isra.0+0x10c/0x320 [ 560.901716] kasan_report+0xa7/0x130 [ 560.901950] ? hdr_find_e.isra.0+0x10c/0x320 [ 560.902208] __asan_load2+0x68/0x90 [ 560.902427] hdr_find_e.isra.0+0x10c/0x320 [ 560.902846] ? cmp_uints+0xe0/0xe0 [ 560.903363] ? cmp_sdh+0x90/0x90 [ 560.903883] ? ntfs_bread_run+0x190/0x190 [ 560.904196] ? rwsem_down_read_slowpath+0x750/0x750 [ 560.904969] ? ntfs_fix_post_read+0xe0/0x130 [ 560.905259] ? __kasan_check_write+0x14/0x20 [ 560.905599] ? up_read+0x1a/0x90 [ 560.905853] ? indx_read+0x22c/0x380 [ 560.906096] indx_find+0x2ef/0x470 [ 560.906352] ? indx_find_buffer+0x2d0/0x2d0 [ 560.906692] ? __kasan_kmalloc+0x88/0xb0 [ 560.906977] dir_search_u+0x196/0x2f0 [ 560.907220] ? ntfs_nls_to_utf16+0x450/0x450 [ 560.907464] ? __kasan_check_write+0x14/0x20 [ 560.907747] ? mutex_lock+0x8f/0xe0 [ 560.907970] ? __mutex_lock_slowpath+0x20/0x20 [ 560.908214] ? kmem_cache_alloc+0x143/0x4b0 [ 560.908459] ntfs_lookup+0xe0/0x100 [ 560.908788] __lookup_slow+0x116/0x220 [ 560.909050] ? lookup_fast+0x1b0/0x1b0 [ 560.909309] ? lookup_fast+0x13f/0x1b0 [ 560.909601] walk_component+0x187/0x230 [ 560.909944] link_path_walk.part.0+0x3f0/0x660 [ 560.910285] ? handle_lookup_down+0x90/0x90 [ 560.910618] ? path_init+0x642/0x6e0 [ 560.911084] ? percpu_counter_add_batch+0x6e/0xf0 [ 560.912559] ? __alloc_file+0x114/0x170 [ 560.913008] path_openat+0x19c/0x1d10 [ 560.913419] ? getname_flags+0x73/0x2b0 [ 560.913815] ? kasan_save_stack+0x3a/0x50 [ 560.914125] ? kasan_save_stack+0x26/0x50 [ 560.914542] ? __kasan_slab_alloc+0x6d/0x90 [ 560.914924] ? kmem_cache_alloc+0x143/0x4b0 [ 560.915339] ? getname_flags+0x73/0x2b0 [ 560.915647] ? getname+0x12/0x20 [ 560.916114] ? __x64_sys_open+0x4c/0x60 [ 560.916460] ? path_lookupat.isra.0+0x230/0x230 [ 560.916867] ? __isolate_free_page+0x2e0/0x2e0 [ 560.917194] do_filp_open+0x15c/0x1f0 [ 560.917448] ? may_open_dev+0x60/0x60 [ 560.917696] ? expand_files+0xa4/0x3a0 [ 560.917923] ? __kasan_check_write+0x14/0x20 [ 560.918185] ? _raw_spin_lock+0x88/0xdb [ 560.918409] ? _raw_spin_lock_irqsave+0x100/0x100 [ 560.918783] ? _find_next_bit+0x4a/0x130 [ 560.919026] ? _raw_spin_unlock+0x19/0x40 [ 560.919276] ? alloc_fd+0x14b/0x2d0 [ 560.919635] do_sys_openat2+0x32a/0x4b0 [ 560.920035] ? file_open_root+0x230/0x230 [ 560.920336] ? __rcu_read_unlock+0x5b/0x280 [ 560.920813] do_sys_open+0x99/0xf0 [ 560.921208] ? filp_open+0x60/0x60 [ 560.921482] ? exit_to_user_mode_prepare+0x49/0x180 [ 560.921867] __x64_sys_open+0x4c/0x60 [ 560.922128] do_syscall_64+0x3b/0x90 [ 560.922369] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 560.923030] RIP: 0033:0x7f7dff2e4469 [ 560.923681] Code: 00 f3 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 088 [ 560.924451] RSP: 002b:00007ffd41a210b8 EFLAGS: 00000206 ORIG_RAX: 0000000000000002 [ 560.925168] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7dff2e4469 [ 560.925655] RDX: 0000000000000000 RSI: 0000000000000002 RDI: ---truncated---
CVE-2025-57254 2 Hospital Management System, Hospital Management System Project 2 Hospital Management System, Hospital Management System 2025-10-02 6.5 Medium
An SQL injection vulnerability in user-login.php and index.php of Karthikg1908 Hospital Management System (HMS) 1.0 allows remote attackers to execute arbitrary SQL queries via the username and password POST parameters. The application fails to properly sanitize input before embedding it into SQL queries, leading to unauthorized access or potential data breaches. This can result in privilege escalation, account takeover, or exposure of sensitive medical data.