| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF caused by offsets overwrite
Binder objects are processed and copied individually into the target
buffer during transactions. Any raw data in-between these objects is
copied as well. However, this raw data copy lacks an out-of-bounds
check. If the raw data exceeds the data section size then the copy
overwrites the offsets section. This eventually triggers an error that
attempts to unwind the processed objects. However, at this point the
offsets used to index these objects are now corrupted.
Unwinding with corrupted offsets can result in decrements of arbitrary
nodes and lead to their premature release. Other users of such nodes are
left with a dangling pointer triggering a use-after-free. This issue is
made evident by the following KASAN report (trimmed):
==================================================================
BUG: KASAN: slab-use-after-free in _raw_spin_lock+0xe4/0x19c
Write of size 4 at addr ffff47fc91598f04 by task binder-util/743
CPU: 9 UID: 0 PID: 743 Comm: binder-util Not tainted 6.11.0-rc4 #1
Hardware name: linux,dummy-virt (DT)
Call trace:
_raw_spin_lock+0xe4/0x19c
binder_free_buf+0x128/0x434
binder_thread_write+0x8a4/0x3260
binder_ioctl+0x18f0/0x258c
[...]
Allocated by task 743:
__kmalloc_cache_noprof+0x110/0x270
binder_new_node+0x50/0x700
binder_transaction+0x413c/0x6da8
binder_thread_write+0x978/0x3260
binder_ioctl+0x18f0/0x258c
[...]
Freed by task 745:
kfree+0xbc/0x208
binder_thread_read+0x1c5c/0x37d4
binder_ioctl+0x16d8/0x258c
[...]
==================================================================
To avoid this issue, let's check that the raw data copy is within the
boundaries of the data section. |
| In the Linux kernel, the following vulnerability has been resolved:
uio_hv_generic: Fix kernel NULL pointer dereference in hv_uio_rescind
For primary VM Bus channels, primary_channel pointer is always NULL. This
pointer is valid only for the secondary channels. Also, rescind callback
is meant for primary channels only.
Fix NULL pointer dereference by retrieving the device_obj from the parent
for the primary channel. |
| In the Linux kernel, the following vulnerability has been resolved:
VMCI: Fix use-after-free when removing resource in vmci_resource_remove()
When removing a resource from vmci_resource_table in
vmci_resource_remove(), the search is performed using the resource
handle by comparing context and resource fields.
It is possible though to create two resources with different types
but same handle (same context and resource fields).
When trying to remove one of the resources, vmci_resource_remove()
may not remove the intended one, but the object will still be freed
as in the case of the datagram type in vmci_datagram_destroy_handle().
vmci_resource_table will still hold a pointer to this freed resource
leading to a use-after-free vulnerability.
BUG: KASAN: use-after-free in vmci_handle_is_equal include/linux/vmw_vmci_defs.h:142 [inline]
BUG: KASAN: use-after-free in vmci_resource_remove+0x3a1/0x410 drivers/misc/vmw_vmci/vmci_resource.c:147
Read of size 4 at addr ffff88801c16d800 by task syz-executor197/1592
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106
print_address_description.constprop.0+0x21/0x366 mm/kasan/report.c:239
__kasan_report.cold+0x7f/0x132 mm/kasan/report.c:425
kasan_report+0x38/0x51 mm/kasan/report.c:442
vmci_handle_is_equal include/linux/vmw_vmci_defs.h:142 [inline]
vmci_resource_remove+0x3a1/0x410 drivers/misc/vmw_vmci/vmci_resource.c:147
vmci_qp_broker_detach+0x89a/0x11b9 drivers/misc/vmw_vmci/vmci_queue_pair.c:2182
ctx_free_ctx+0x473/0xbe1 drivers/misc/vmw_vmci/vmci_context.c:444
kref_put include/linux/kref.h:65 [inline]
vmci_ctx_put drivers/misc/vmw_vmci/vmci_context.c:497 [inline]
vmci_ctx_destroy+0x170/0x1d6 drivers/misc/vmw_vmci/vmci_context.c:195
vmci_host_close+0x125/0x1ac drivers/misc/vmw_vmci/vmci_host.c:143
__fput+0x261/0xa34 fs/file_table.c:282
task_work_run+0xf0/0x194 kernel/task_work.c:164
tracehook_notify_resume include/linux/tracehook.h:189 [inline]
exit_to_user_mode_loop+0x184/0x189 kernel/entry/common.c:187
exit_to_user_mode_prepare+0x11b/0x123 kernel/entry/common.c:220
__syscall_exit_to_user_mode_work kernel/entry/common.c:302 [inline]
syscall_exit_to_user_mode+0x18/0x42 kernel/entry/common.c:313
do_syscall_64+0x41/0x85 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x6e/0x0
This change ensures the type is also checked when removing
the resource from vmci_resource_table in vmci_resource_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-tcp: fix kernel crash if commands allocation fails
If the commands allocation fails in nvmet_tcp_alloc_cmds()
the kernel crashes in nvmet_tcp_release_queue_work() because of
a NULL pointer dereference.
nvmet: failed to install queue 0 cntlid 1 ret 6
Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000008
Fix the bug by setting queue->nr_cmds to zero in case
nvmet_tcp_alloc_cmd() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk_drv: fix NULL pointer dereference in ublk_ctrl_start_recovery()
When two UBLK_CMD_START_USER_RECOVERY commands are submitted, the
first one sets 'ubq->ubq_daemon' to NULL, and the second one triggers
WARN in ublk_queue_reinit() and subsequently a NULL pointer dereference
issue.
Fix it by adding the check in ublk_ctrl_start_recovery() and return
immediately in case of zero 'ub->nr_queues_ready'.
BUG: kernel NULL pointer dereference, address: 0000000000000028
RIP: 0010:ublk_ctrl_start_recovery.constprop.0+0x82/0x180
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x75/0x170
? exc_page_fault+0x64/0x140
? asm_exc_page_fault+0x22/0x30
? ublk_ctrl_start_recovery.constprop.0+0x82/0x180
ublk_ctrl_uring_cmd+0x4f7/0x6c0
? pick_next_task_idle+0x26/0x40
io_uring_cmd+0x9a/0x1b0
io_issue_sqe+0x193/0x3f0
io_wq_submit_work+0x9b/0x390
io_worker_handle_work+0x165/0x360
io_wq_worker+0xcb/0x2f0
? finish_task_switch.isra.0+0x203/0x290
? finish_task_switch.isra.0+0x203/0x290
? __pfx_io_wq_worker+0x10/0x10
ret_from_fork+0x2d/0x50
? __pfx_io_wq_worker+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between direct IO write and fsync when using same fd
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
1) Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
2) Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
1) A user space program opens a file descriptor with O_DIRECT;
2) The program spawns 2 threads using libpthread for example;
3) One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
4) Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
5) Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
6) Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
7) Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
8) Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mod
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Assign linear_pitch_alignment even for VM
[Description]
Assign linear_pitch_alignment so we don't cause a divide by 0
error in VM environments |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix the Out-of-bounds read warning
using index i - 1U may beyond element index
for mc_data[] when i = 0. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Ensure index calculation will not overflow
[WHY & HOW]
Make sure vmid0p72_idx, vnom0p8_idx and vmax0p9_idx calculation will
never overflow and exceess array size.
This fixes 3 OVERRUN and 1 INTEGER_OVERFLOW issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix out-of-bounds write warning
Check the ring type value to fix the out-of-bounds
write warning |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix out-of-bounds read of df_v1_7_channel_number
Check the fb_channel_number range to avoid the array out-of-bounds
read error |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix ucode out-of-bounds read warning
Clear warning that read ucode[] may out-of-bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix mc_data out-of-bounds read warning
Clear warning that read mc_data[i-1] may out-of-bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
apparmor: fix possible NULL pointer dereference
profile->parent->dents[AAFS_PROF_DIR] could be NULL only if its parent is made
from __create_missing_ancestors(..) and 'ent->old' is NULL in
aa_replace_profiles(..).
In that case, it must return an error code and the code, -ENOENT represents
its state that the path of its parent is not existed yet.
BUG: kernel NULL pointer dereference, address: 0000000000000030
PGD 0 P4D 0
PREEMPT SMP PTI
CPU: 4 PID: 3362 Comm: apparmor_parser Not tainted 6.8.0-24-generic #24
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:aafs_create.constprop.0+0x7f/0x130
Code: 4c 63 e0 48 83 c4 18 4c 89 e0 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff 45 31 c0 45 31 c9 45 31 d2 c3 cc cc cc cc <4d> 8b 55 30 4d 8d ba a0 00 00 00 4c 89 55 c0 4c 89 ff e8 7a 6a ae
RSP: 0018:ffffc9000b2c7c98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000000041ed RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc9000b2c7cd8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82baac10
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007be9f22cf740(0000) GS:ffff88817bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000030 CR3: 0000000134b08000 CR4: 00000000000006f0
Call Trace:
<TASK>
? show_regs+0x6d/0x80
? __die+0x24/0x80
? page_fault_oops+0x99/0x1b0
? kernelmode_fixup_or_oops+0xb2/0x140
? __bad_area_nosemaphore+0x1a5/0x2c0
? find_vma+0x34/0x60
? bad_area_nosemaphore+0x16/0x30
? do_user_addr_fault+0x2a2/0x6b0
? exc_page_fault+0x83/0x1b0
? asm_exc_page_fault+0x27/0x30
? aafs_create.constprop.0+0x7f/0x130
? aafs_create.constprop.0+0x51/0x130
__aafs_profile_mkdir+0x3d6/0x480
aa_replace_profiles+0x83f/0x1270
policy_update+0xe3/0x180
profile_load+0xbc/0x150
? rw_verify_area+0x47/0x140
vfs_write+0x100/0x480
? __x64_sys_openat+0x55/0xa0
? syscall_exit_to_user_mode+0x86/0x260
ksys_write+0x73/0x100
__x64_sys_write+0x19/0x30
x64_sys_call+0x7e/0x25c0
do_syscall_64+0x7f/0x180
entry_SYSCALL_64_after_hwframe+0x78/0x80
RIP: 0033:0x7be9f211c574
Code: c7 00 16 00 00 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 80 3d d5 ea 0e 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 55 48 89 e5 48 83 ec 20 48 89
RSP: 002b:00007ffd26f2b8c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00005d504415e200 RCX: 00007be9f211c574
RDX: 0000000000001fc1 RSI: 00005d504418bc80 RDI: 0000000000000004
RBP: 0000000000001fc1 R08: 0000000000001fc1 R09: 0000000080000000
R10: 0000000000000000 R11: 0000000000000202 R12: 00005d504418bc80
R13: 0000000000000004 R14: 00007ffd26f2b9b0 R15: 00007ffd26f2ba30
</TASK>
Modules linked in: snd_seq_dummy snd_hrtimer qrtr snd_hda_codec_generic snd_hda_intel snd_intel_dspcfg snd_intel_sdw_acpi snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_seq_midi snd_seq_midi_event snd_rawmidi snd_seq snd_seq_device i2c_i801 snd_timer i2c_smbus qxl snd soundcore drm_ttm_helper lpc_ich ttm joydev input_leds serio_raw mac_hid binfmt_misc msr parport_pc ppdev lp parport efi_pstore nfnetlink dmi_sysfs qemu_fw_cfg ip_tables x_tables autofs4 hid_generic usbhid hid ahci libahci psmouse virtio_rng xhci_pci xhci_pci_renesas
CR2: 0000000000000030
---[ end trace 0000000000000000 ]---
RIP: 0010:aafs_create.constprop.0+0x7f/0x130
Code: 4c 63 e0 48 83 c4 18 4c 89 e0 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff 45 31 c0 45 31 c9 45 31 d2 c3 cc cc cc cc <4d> 8b 55 30 4d 8d ba a0 00 00 00 4c 89 55 c0 4c 89 ff e8 7a 6a ae
RSP: 0018:ffffc9000b2c7c98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000000041ed RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc9000b2c7cd8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix dereference after null check
check the pointer hive before use. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Fix null pointer dereference in trace
ucsi_register_altmode checks IS_ERR for the alt pointer and treats
NULL as valid. When CONFIG_TYPEC_DP_ALTMODE is not enabled,
ucsi_register_displayport returns NULL which causes a NULL pointer
dereference in trace. Rather than return NULL, call
typec_port_register_altmode to register DisplayPort alternate mode
as a non-controllable mode when CONFIG_TYPEC_DP_ALTMODE is not enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: SHAMPO, Fix incorrect page release
Under the following conditions:
1) No skb created yet
2) header_size == 0 (no SHAMPO header)
3) header_index + 1 % MLX5E_SHAMPO_WQ_HEADER_PER_PAGE == 0 (this is the
last page fragment of a SHAMPO header page)
a new skb is formed with a page that is NOT a SHAMPO header page (it
is a regular data page). Further down in the same function
(mlx5e_handle_rx_cqe_mpwrq_shampo()), a SHAMPO header page from
header_index is released. This is wrong and it leads to SHAMPO header
pages being released more than once. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: altera-msgdma: properly free descriptor in msgdma_free_descriptor
Remove list_del call in msgdma_chan_desc_cleanup, this should be the role
of msgdma_free_descriptor. In consequence replace list_add_tail with
list_move_tail in msgdma_free_descriptor.
This fixes the path:
msgdma_free_chan_resources -> msgdma_free_descriptors ->
msgdma_free_desc_list -> msgdma_free_descriptor
which does not correctly free the descriptors as first nodes were not
removed from the list. |
| In the Linux kernel, the following vulnerability has been resolved:
driver: iio: add missing checks on iio_info's callback access
Some callbacks from iio_info structure are accessed without any check, so
if a driver doesn't implement them trying to access the corresponding
sysfs entries produce a kernel oops such as:
[ 2203.527791] Unable to handle kernel NULL pointer dereference at virtual address 00000000 when execute
[...]
[ 2203.783416] Call trace:
[ 2203.783429] iio_read_channel_info_avail from dev_attr_show+0x18/0x48
[ 2203.789807] dev_attr_show from sysfs_kf_seq_show+0x90/0x120
[ 2203.794181] sysfs_kf_seq_show from seq_read_iter+0xd0/0x4e4
[ 2203.798555] seq_read_iter from vfs_read+0x238/0x2a0
[ 2203.802236] vfs_read from ksys_read+0xa4/0xd4
[ 2203.805385] ksys_read from ret_fast_syscall+0x0/0x54
[ 2203.809135] Exception stack(0xe0badfa8 to 0xe0badff0)
[ 2203.812880] dfa0: 00000003 b6f10f80 00000003 b6eab000 00020000 00000000
[ 2203.819746] dfc0: 00000003 b6f10f80 7ff00000 00000003 00000003 00000000 00020000 00000000
[ 2203.826619] dfe0: b6e1bc88 bed80958 b6e1bc94 b6e1bcb0
[ 2203.830363] Code: bad PC value
[ 2203.832695] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip wbscl_set_scaler_filter if filter is null
Callers can pass null in filter (i.e. from returned from the function
wbscl_get_filter_coeffs_16p) and a null check is added to ensure that is
not the case.
This fixes 4 NULL_RETURNS issues reported by Coverity. |