| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.1, macOS Sequoia 15, macOS Sonoma 14.7.1. An attacker with physical access may be able to share items from the lock screen. |
| The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.1, macOS Sequoia 15, iOS 17.7 and iPadOS 17.7, macOS Sonoma 14.7, visionOS 2, iOS 18 and iPadOS 18. Processing a maliciously crafted file may lead to heap corruption. |
| A logic issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.1, macOS Sequoia 15, macOS Sonoma 14.7.1. An application may be able to break out of its sandbox. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix NULL dereference at band check in starting tx ba session
In MLD connection, link_data/link_conf are dynamically allocated. They
don't point to vif->bss_conf. So, there will be no chanreq assigned to
vif->bss_conf and then the chan will be NULL. Tweak the code to check
ht_supported/vht_supported/has_he/has_eht on sta deflink.
Crash log (with rtw89 version under MLO development):
[ 9890.526087] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 9890.526102] #PF: supervisor read access in kernel mode
[ 9890.526105] #PF: error_code(0x0000) - not-present page
[ 9890.526109] PGD 0 P4D 0
[ 9890.526114] Oops: 0000 [#1] PREEMPT SMP PTI
[ 9890.526119] CPU: 2 PID: 6367 Comm: kworker/u16:2 Kdump: loaded Tainted: G OE 6.9.0 #1
[ 9890.526123] Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB3WW (2.73 ) 11/28/2018
[ 9890.526126] Workqueue: phy2 rtw89_core_ba_work [rtw89_core]
[ 9890.526203] RIP: 0010:ieee80211_start_tx_ba_session (net/mac80211/agg-tx.c:618 (discriminator 1)) mac80211
[ 9890.526279] Code: f7 e8 d5 93 3e ea 48 83 c4 28 89 d8 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 49 8b 84 24 e0 f1 ff ff 48 8b 80 90 1b 00 00 <83> 38 03 0f 84 37 fe ff ff bb ea ff ff ff eb cc 49 8b 84 24 10 f3
All code
========
0: f7 e8 imul %eax
2: d5 (bad)
3: 93 xchg %eax,%ebx
4: 3e ea ds (bad)
6: 48 83 c4 28 add $0x28,%rsp
a: 89 d8 mov %ebx,%eax
c: 5b pop %rbx
d: 41 5c pop %r12
f: 41 5d pop %r13
11: 41 5e pop %r14
13: 41 5f pop %r15
15: 5d pop %rbp
16: c3 retq
17: cc int3
18: cc int3
19: cc int3
1a: cc int3
1b: 49 8b 84 24 e0 f1 ff mov -0xe20(%r12),%rax
22: ff
23: 48 8b 80 90 1b 00 00 mov 0x1b90(%rax),%rax
2a:* 83 38 03 cmpl $0x3,(%rax) <-- trapping instruction
2d: 0f 84 37 fe ff ff je 0xfffffffffffffe6a
33: bb ea ff ff ff mov $0xffffffea,%ebx
38: eb cc jmp 0x6
3a: 49 rex.WB
3b: 8b .byte 0x8b
3c: 84 24 10 test %ah,(%rax,%rdx,1)
3f: f3 repz
Code starting with the faulting instruction
===========================================
0: 83 38 03 cmpl $0x3,(%rax)
3: 0f 84 37 fe ff ff je 0xfffffffffffffe40
9: bb ea ff ff ff mov $0xffffffea,%ebx
e: eb cc jmp 0xffffffffffffffdc
10: 49 rex.WB
11: 8b .byte 0x8b
12: 84 24 10 test %ah,(%rax,%rdx,1)
15: f3 repz
[ 9890.526285] RSP: 0018:ffffb8db09013d68 EFLAGS: 00010246
[ 9890.526291] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9308e0d656c8
[ 9890.526295] RDX: 0000000000000000 RSI: ffffffffab99460b RDI: ffffffffab9a7685
[ 9890.526300] RBP: ffffb8db09013db8 R08: 0000000000000000 R09: 0000000000000873
[ 9890.526304] R10: ffff9308e0d64800 R11: 0000000000000002 R12: ffff9308e5ff6e70
[ 9890.526308] R13: ffff930952500e20 R14: ffff9309192a8c00 R15: 0000000000000000
[ 9890.526313] FS: 0000000000000000(0000) GS:ffff930b4e700000(0000) knlGS:0000000000000000
[ 9890.526316] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 9890.526318] CR2: 0000000000000000 CR3: 0000000391c58005 CR4: 00000000001706f0
[ 9890.526321] Call Trace:
[ 9890.526324] <TASK>
[ 9890.526327] ? show_regs (arch/x86/kernel/dumpstack.c:479)
[ 9890.526335] ? __die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434)
[ 9890.526340] ? page_fault_oops (arch/x86/mm/fault.c:713)
[ 9890.526347] ? search_module_extables (kernel/module/main.c:3256 (discriminator
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/pm: Fix the null pointer dereference for smu7
optimize the code to avoid pass a null pointer (hwmgr->backend)
to function smu7_update_edc_leakage_table. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix the null pointer dereference to ras_manager
Check ras_manager before using it |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add null checks for 'stream' and 'plane' before dereferencing
This commit adds null checks for the 'stream' and 'plane' variables in
the dcn30_apply_idle_power_optimizations function. These variables were
previously assumed to be null at line 922, but they were used later in
the code without checking if they were null. This could potentially lead
to a null pointer dereference, which would cause a crash.
The null checks ensure that 'stream' and 'plane' are not null before
they are used, preventing potential crashes.
Fixes the below static smatch checker:
drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:938 dcn30_apply_idle_power_optimizations() error: we previously assumed 'stream' could be null (see line 922)
drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:940 dcn30_apply_idle_power_optimizations() error: we previously assumed 'plane' could be null (see line 922) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add null checker before passing variables
Checks null pointer before passing variables to functions.
This fixes 3 NULL_RETURNS issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
net: drop bad gso csum_start and offset in virtio_net_hdr
Tighten csum_start and csum_offset checks in virtio_net_hdr_to_skb
for GSO packets.
The function already checks that a checksum requested with
VIRTIO_NET_HDR_F_NEEDS_CSUM is in skb linear. But for GSO packets
this might not hold for segs after segmentation.
Syzkaller demonstrated to reach this warning in skb_checksum_help
offset = skb_checksum_start_offset(skb);
ret = -EINVAL;
if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
By injecting a TSO packet:
WARNING: CPU: 1 PID: 3539 at net/core/dev.c:3284 skb_checksum_help+0x3d0/0x5b0
ip_do_fragment+0x209/0x1b20 net/ipv4/ip_output.c:774
ip_finish_output_gso net/ipv4/ip_output.c:279 [inline]
__ip_finish_output+0x2bd/0x4b0 net/ipv4/ip_output.c:301
iptunnel_xmit+0x50c/0x930 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x2296/0x2c70 net/ipv4/ip_tunnel.c:813
__gre_xmit net/ipv4/ip_gre.c:469 [inline]
ipgre_xmit+0x759/0xa60 net/ipv4/ip_gre.c:661
__netdev_start_xmit include/linux/netdevice.h:4850 [inline]
netdev_start_xmit include/linux/netdevice.h:4864 [inline]
xmit_one net/core/dev.c:3595 [inline]
dev_hard_start_xmit+0x261/0x8c0 net/core/dev.c:3611
__dev_queue_xmit+0x1b97/0x3c90 net/core/dev.c:4261
packet_snd net/packet/af_packet.c:3073 [inline]
The geometry of the bad input packet at tcp_gso_segment:
[ 52.003050][ T8403] skb len=12202 headroom=244 headlen=12093 tailroom=0
[ 52.003050][ T8403] mac=(168,24) mac_len=24 net=(192,52) trans=244
[ 52.003050][ T8403] shinfo(txflags=0 nr_frags=1 gso(size=1552 type=3 segs=0))
[ 52.003050][ T8403] csum(0x60000c7 start=199 offset=1536
ip_summed=3 complete_sw=0 valid=0 level=0)
Mitigate with stricter input validation.
csum_offset: for GSO packets, deduce the correct value from gso_type.
This is already done for USO. Extend it to TSO. Let UFO be:
udp[46]_ufo_fragment ignores these fields and always computes the
checksum in software.
csum_start: finding the real offset requires parsing to the transport
header. Do not add a parser, use existing segmentation parsing. Thanks
to SKB_GSO_DODGY, that also catches bad packets that are hw offloaded.
Again test both TSO and USO. Do not test UFO for the above reason, and
do not test UDP tunnel offload.
GSO packet are almost always CHECKSUM_PARTIAL. USO packets may be
CHECKSUM_NONE since commit 10154dbded6d6 ("udp: Allow GSO transmit
from devices with no checksum offload"), but then still these fields
are initialized correctly in udp4_hwcsum/udp6_hwcsum_outgoing. So no
need to test for ip_summed == CHECKSUM_PARTIAL first.
This revises an existing fix mentioned in the Fixes tag, which broke
small packets with GSO offload, as detected by kselftests. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: fix null pointer dereference in drm_client_modeset_probe
In drm_client_modeset_probe(), the return value of drm_mode_duplicate() is
assigned to modeset->mode, which will lead to a possible NULL pointer
dereference on failure of drm_mode_duplicate(). Add a check to avoid npd. |
| In the Linux kernel, the following vulnerability has been resolved:
memcg: protect concurrent access to mem_cgroup_idr
Commit 73f576c04b94 ("mm: memcontrol: fix cgroup creation failure after
many small jobs") decoupled the memcg IDs from the CSS ID space to fix the
cgroup creation failures. It introduced IDR to maintain the memcg ID
space. The IDR depends on external synchronization mechanisms for
modifications. For the mem_cgroup_idr, the idr_alloc() and idr_replace()
happen within css callback and thus are protected through cgroup_mutex
from concurrent modifications. However idr_remove() for mem_cgroup_idr
was not protected against concurrency and can be run concurrently for
different memcgs when they hit their refcnt to zero. Fix that.
We have been seeing list_lru based kernel crashes at a low frequency in
our fleet for a long time. These crashes were in different part of
list_lru code including list_lru_add(), list_lru_del() and reparenting
code. Upon further inspection, it looked like for a given object (dentry
and inode), the super_block's list_lru didn't have list_lru_one for the
memcg of that object. The initial suspicions were either the object is
not allocated through kmem_cache_alloc_lru() or somehow
memcg_list_lru_alloc() failed to allocate list_lru_one() for a memcg but
returned success. No evidence were found for these cases.
Looking more deeply, we started seeing situations where valid memcg's id
is not present in mem_cgroup_idr and in some cases multiple valid memcgs
have same id and mem_cgroup_idr is pointing to one of them. So, the most
reasonable explanation is that these situations can happen due to race
between multiple idr_remove() calls or race between
idr_alloc()/idr_replace() and idr_remove(). These races are causing
multiple memcgs to acquire the same ID and then offlining of one of them
would cleanup list_lrus on the system for all of them. Later access from
other memcgs to the list_lru cause crashes due to missing list_lru_one. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix overflow in get_free_elt()
"tracing_map->next_elt" in get_free_elt() is at risk of overflowing.
Once it overflows, new elements can still be inserted into the tracing_map
even though the maximum number of elements (`max_elts`) has been reached.
Continuing to insert elements after the overflow could result in the
tracing_map containing "tracing_map->max_size" elements, leaving no empty
entries.
If any attempt is made to insert an element into a full tracing_map using
`__tracing_map_insert()`, it will cause an infinite loop with preemption
disabled, leading to a CPU hang problem.
Fix this by preventing any further increments to "tracing_map->next_elt"
once it reaches "tracing_map->max_elt". |
| In the Linux kernel, the following vulnerability has been resolved:
padata: Fix possible divide-by-0 panic in padata_mt_helper()
We are hit with a not easily reproducible divide-by-0 panic in padata.c at
bootup time.
[ 10.017908] Oops: divide error: 0000 1 PREEMPT SMP NOPTI
[ 10.017908] CPU: 26 PID: 2627 Comm: kworker/u1666:1 Not tainted 6.10.0-15.el10.x86_64 #1
[ 10.017908] Hardware name: Lenovo ThinkSystem SR950 [7X12CTO1WW]/[7X12CTO1WW], BIOS [PSE140J-2.30] 07/20/2021
[ 10.017908] Workqueue: events_unbound padata_mt_helper
[ 10.017908] RIP: 0010:padata_mt_helper+0x39/0xb0
:
[ 10.017963] Call Trace:
[ 10.017968] <TASK>
[ 10.018004] ? padata_mt_helper+0x39/0xb0
[ 10.018084] process_one_work+0x174/0x330
[ 10.018093] worker_thread+0x266/0x3a0
[ 10.018111] kthread+0xcf/0x100
[ 10.018124] ret_from_fork+0x31/0x50
[ 10.018138] ret_from_fork_asm+0x1a/0x30
[ 10.018147] </TASK>
Looking at the padata_mt_helper() function, the only way a divide-by-0
panic can happen is when ps->chunk_size is 0. The way that chunk_size is
initialized in padata_do_multithreaded(), chunk_size can be 0 when the
min_chunk in the passed-in padata_mt_job structure is 0.
Fix this divide-by-0 panic by making sure that chunk_size will be at least
1 no matter what the input parameters are. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Add error handling to pair_device()
hci_conn_params_add() never checks for a NULL value and could lead to a NULL
pointer dereference causing a crash.
Fixed by adding error handling in the function. |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_erp: Fix object nesting warning
ACLs in Spectrum-2 and newer ASICs can reside in the algorithmic TCAM
(A-TCAM) or in the ordinary circuit TCAM (C-TCAM). The former can
contain more ACLs (i.e., tc filters), but the number of masks in each
region (i.e., tc chain) is limited.
In order to mitigate the effects of the above limitation, the device
allows filters to share a single mask if their masks only differ in up
to 8 consecutive bits. For example, dst_ip/25 can be represented using
dst_ip/24 with a delta of 1 bit. The C-TCAM does not have a limit on the
number of masks being used (and therefore does not support mask
aggregation), but can contain a limited number of filters.
The driver uses the "objagg" library to perform the mask aggregation by
passing it objects that consist of the filter's mask and whether the
filter is to be inserted into the A-TCAM or the C-TCAM since filters in
different TCAMs cannot share a mask.
The set of created objects is dependent on the insertion order of the
filters and is not necessarily optimal. Therefore, the driver will
periodically ask the library to compute a more optimal set ("hints") by
looking at all the existing objects.
When the library asks the driver whether two objects can be aggregated
the driver only compares the provided masks and ignores the A-TCAM /
C-TCAM indication. This is the right thing to do since the goal is to
move as many filters as possible to the A-TCAM. The driver also forbids
two identical masks from being aggregated since this can only happen if
one was intentionally put in the C-TCAM to avoid a conflict in the
A-TCAM.
The above can result in the following set of hints:
H1: {mask X, A-TCAM} -> H2: {mask Y, A-TCAM} // X is Y + delta
H3: {mask Y, C-TCAM} -> H4: {mask Z, A-TCAM} // Y is Z + delta
After getting the hints from the library the driver will start migrating
filters from one region to another while consulting the computed hints
and instructing the device to perform a lookup in both regions during
the transition.
Assuming a filter with mask X is being migrated into the A-TCAM in the
new region, the hints lookup will return H1. Since H2 is the parent of
H1, the library will try to find the object associated with it and
create it if necessary in which case another hints lookup (recursive)
will be performed. This hints lookup for {mask Y, A-TCAM} will either
return H2 or H3 since the driver passes the library an object comparison
function that ignores the A-TCAM / C-TCAM indication.
This can eventually lead to nested objects which are not supported by
the library [1].
Fix by removing the object comparison function from both the driver and
the library as the driver was the only user. That way the lookup will
only return exact matches.
I do not have a reliable reproducer that can reproduce the issue in a
timely manner, but before the fix the issue would reproduce in several
minutes and with the fix it does not reproduce in over an hour.
Note that the current usefulness of the hints is limited because they
include the C-TCAM indication and represent aggregation that cannot
actually happen. This will be addressed in net-next.
[1]
WARNING: CPU: 0 PID: 153 at lib/objagg.c:170 objagg_obj_parent_assign+0xb5/0xd0
Modules linked in:
CPU: 0 PID: 153 Comm: kworker/0:18 Not tainted 6.9.0-rc6-custom-g70fbc2c1c38b #42
Hardware name: Mellanox Technologies Ltd. MSN3700C/VMOD0008, BIOS 5.11 10/10/2018
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:objagg_obj_parent_assign+0xb5/0xd0
[...]
Call Trace:
<TASK>
__objagg_obj_get+0x2bb/0x580
objagg_obj_get+0xe/0x80
mlxsw_sp_acl_erp_mask_get+0xb5/0xf0
mlxsw_sp_acl_atcam_entry_add+0xe8/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270
mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510
process_one_work+0x151/0x370 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: handle 2x996 RU allocation in cfg80211_calculate_bitrate_he()
Currently NL80211_RATE_INFO_HE_RU_ALLOC_2x996 is not handled in
cfg80211_calculate_bitrate_he(), leading to below warning:
kernel: invalid HE MCS: bw:6, ru:6
kernel: WARNING: CPU: 0 PID: 2312 at net/wireless/util.c:1501 cfg80211_calculate_bitrate_he+0x22b/0x270 [cfg80211]
Fix it by handling 2x996 RU allocation in the same way as 160 MHz bandwidth. |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: ivtv: Add check for DMA map result
In case DMA fails, 'dma->SG_length' is 0. This value is later used to
access 'dma->SGarray[dma->SG_length - 1]', which will cause out of
bounds access.
Add check to return early on invalid value. Adjust warnings accordingly.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: rcar: Demote WARN() to dev_warn_ratelimited() in rcar_pcie_wakeup()
Avoid large backtrace, it is sufficient to warn the user that there has
been a link problem. Either the link has failed and the system is in need
of maintenance, or the link continues to work and user has been informed.
The message from the warning can be looked up in the sources.
This makes an actual link issue less verbose.
First of all, this controller has a limitation in that the controller
driver has to assist the hardware with transition to L1 link state by
writing L1IATN to PMCTRL register, the L1 and L0 link state switching
is not fully automatic on this controller.
In case of an ASMedia ASM1062 PCIe SATA controller which does not support
ASPM, on entry to suspend or during platform pm_test, the SATA controller
enters D3hot state and the link enters L1 state. If the SATA controller
wakes up before rcar_pcie_wakeup() was called and returns to D0, the link
returns to L0 before the controller driver even started its transition to
L1 link state. At this point, the SATA controller did send an PM_ENTER_L1
DLLP to the PCIe controller and the PCIe controller received it, and the
PCIe controller did set PMSR PMEL1RX bit.
Once rcar_pcie_wakeup() is called, if the link is already back in L0 state
and PMEL1RX bit is set, the controller driver has no way to determine if
it should perform the link transition to L1 state, or treat the link as if
it is in L0 state. Currently the driver attempts to perform the transition
to L1 link state unconditionally, which in this specific case fails with a
PMSR L1FAEG poll timeout, however the link still works as it is already
back in L0 state.
Reduce this warning verbosity. In case the link is really broken, the
rcar_pcie_config_access() would fail, otherwise it will succeed and any
system with this controller and ASM1062 can suspend without generating
a backtrace. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: Clean up error handling in vpci_scan_bus()
Smatch complains about inconsistent NULL checking in vpci_scan_bus():
drivers/pci/endpoint/functions/pci-epf-vntb.c:1024 vpci_scan_bus() error: we previously assumed 'vpci_bus' could be null (see line 1021)
Instead of printing an error message and then crashing we should return
an error code and clean up.
Also the NULL check is reversed so it prints an error for success
instead of failure. |
| In the Linux kernel, the following vulnerability has been resolved:
vhost/vsock: always initialize seqpacket_allow
There are two issues around seqpacket_allow:
1. seqpacket_allow is not initialized when socket is
created. Thus if features are never set, it will be
read uninitialized.
2. if VIRTIO_VSOCK_F_SEQPACKET is set and then cleared,
then seqpacket_allow will not be cleared appropriately
(existing apps I know about don't usually do this but
it's legal and there's no way to be sure no one relies
on this).
To fix:
- initialize seqpacket_allow after allocation
- set it unconditionally in set_features |