| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Integer overflows in memory allocation in Das U-Boot before 2025.01-rc1 occur for a crafted squashfs filesystem via sbrk, via request2size, or because ptrdiff_t is mishandled on x86_64. |
| A stack consumption issue in sqfs_size in Das U-Boot before 2025.01-rc1 occurs via a crafted squashfs filesystem with deep symlink nesting. |
| An integer overflow in ext4fs_read_symlink in Das U-Boot before 2025.01-rc1 occurs for zalloc (adding one to an le32 variable) via a crafted ext4 filesystem with an inode size of 0xffffffff, resulting in a malloc of zero and resultant memory overwrite. |
| An integer overflow in sqfs_resolve_symlink in Das U-Boot before 2025.01-rc1 occurs via a crafted squashfs filesystem with an inode size of 0xffffffff, resulting in a malloc of zero and resultant memory overwrite. |
| An integer overflow in sqfs_inode_size in Das U-Boot before 2025.01-rc1 occurs in the symlink size calculation via a crafted squashfs filesystem. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: use ieee80211_purge_tx_queue() to purge TX skb
When removing kernel modules by:
rmmod rtw88_8723cs rtw88_8703b rtw88_8723x rtw88_sdio rtw88_core
Driver uses skb_queue_purge() to purge TX skb, but not report tx status
causing "Have pending ack frames!" warning. Use ieee80211_purge_tx_queue()
to correct this.
Since ieee80211_purge_tx_queue() doesn't take locks, to prevent racing
between TX work and purge TX queue, flush and destroy TX work in advance.
wlan0: deauthenticating from aa:f5:fd:60:4c:a8 by local
choice (Reason: 3=DEAUTH_LEAVING)
------------[ cut here ]------------
Have pending ack frames!
WARNING: CPU: 3 PID: 9232 at net/mac80211/main.c:1691
ieee80211_free_ack_frame+0x5c/0x90 [mac80211]
CPU: 3 PID: 9232 Comm: rmmod Tainted: G C
6.10.1-200.fc40.aarch64 #1
Hardware name: pine64 Pine64 PinePhone Braveheart
(1.1)/Pine64 PinePhone Braveheart (1.1), BIOS 2024.01 01/01/2024
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : ieee80211_free_ack_frame+0x5c/0x90 [mac80211]
lr : ieee80211_free_ack_frame+0x5c/0x90 [mac80211]
sp : ffff80008c1b37b0
x29: ffff80008c1b37b0 x28: ffff000003be8000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff000003dc14b8 x24: ffff80008c1b37d0
x23: ffff000000ff9f80 x22: 0000000000000000 x21: 000000007fffffff
x20: ffff80007c7e93d8 x19: ffff00006e66f400 x18: 0000000000000000
x17: ffff7ffffd2b3000 x16: ffff800083fc0000 x15: 0000000000000000
x14: 0000000000000000 x13: 2173656d61726620 x12: 6b636120676e6964
x11: 0000000000000000 x10: 000000000000005d x9 : ffff8000802af2b0
x8 : ffff80008c1b3430 x7 : 0000000000000001 x6 : 0000000000000001
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff000003be8000
Call trace:
ieee80211_free_ack_frame+0x5c/0x90 [mac80211]
idr_for_each+0x74/0x110
ieee80211_free_hw+0x44/0xe8 [mac80211]
rtw_sdio_remove+0x9c/0xc0 [rtw88_sdio]
sdio_bus_remove+0x44/0x180
device_remove+0x54/0x90
device_release_driver_internal+0x1d4/0x238
driver_detach+0x54/0xc0
bus_remove_driver+0x78/0x108
driver_unregister+0x38/0x78
sdio_unregister_driver+0x2c/0x40
rtw_8723cs_driver_exit+0x18/0x1000 [rtw88_8723cs]
__do_sys_delete_module.isra.0+0x190/0x338
__arm64_sys_delete_module+0x1c/0x30
invoke_syscall+0x74/0x100
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x3c/0x158
el0t_64_sync_handler+0x120/0x138
el0t_64_sync+0x194/0x198
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Fix NULL pointer dereference in object->file
At present, the object->file has the NULL pointer dereference problem in
ondemand-mode. The root cause is that the allocated fd and object->file
lifetime are inconsistent, and the user-space invocation to anon_fd uses
object->file. Following is the process that triggers the issue:
[write fd] [umount]
cachefiles_ondemand_fd_write_iter
fscache_cookie_state_machine
cachefiles_withdraw_cookie
if (!file) return -ENOBUFS
cachefiles_clean_up_object
cachefiles_unmark_inode_in_use
fput(object->file)
object->file = NULL
// file NULL pointer dereference!
__cachefiles_write(..., file, ...)
Fix this issue by add an additional reference count to the object->file
before write/llseek, and decrement after it finished. |
| An issue was discovered in TCPDF before 6.8.0. The Error function lacks an htmlspecialchars call for the error message. |
| An issue was discovered in TCPDF before 6.8.0. unserializeTCPDFtag uses != (aka loose comparison) and does not use a constant-time function to compare TCPDF tag hashes. |
| An issue was discovered in tc-lib-pdf-font before 2.6.4, as used in TCPDF before 6.8.0 and other products. Fonts are mishandled, e.g., FontBBox for Type 1 and TrueType fonts is misparsed. |
| An issue was discovered in TCPDF before 6.8.0. setSVGStyles does not sanitize the SVG font-family attribute. |
| libpoppler.so in Poppler through 24.12.0 has an out-of-bounds read vulnerability within the JBIG2Bitmap::combine function in JBIG2Stream.cc. |
| Jinja is an extensible templating engine. Prior to 3.1.5, An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. This vulnerability is fixed in 3.1.5. |
| Suricata is a network Intrusion Detection System, Intrusion Prevention System and Network Security Monitoring engine. Prior to 7.0.8, a large BPF filter file provided to Suricata at startup can lead to a buffer overflow at Suricata startup. The issue has been addressed in Suricata 7.0.8. |
| Uncontrolled Resource Consumption vulnerability in the examples web application provided with Apache Tomcat leads to denial of service.
This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.1, from 10.1.0-M1 through 10.1.33, from 9.0.0.M1 through 9.9.97.
The following versions were EOL at the time the CVE was created but are
known to be affected: 8.5.0 though 8.5.100. Other, older, EOL versions
may also be affected.
Users are recommended to upgrade to version 11.0.2, 10.1.34 or 9.0.98, which fixes the issue. |
| The issue was addressed with improved memory handling. This issue is fixed in watchOS 10.6, tvOS 17.6, Safari 17.6, macOS Sonoma 14.6, visionOS 1.3, iOS 17.6 and iPadOS 17.6. Processing web content may lead to a denial-of-service. |
| A cookie management issue was addressed with improved state management. This issue is fixed in watchOS 11, macOS Sequoia 15, Safari 18, visionOS 2, iOS 18 and iPadOS 18, tvOS 18. A malicious website may exfiltrate data cross-origin. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: bsg: Set bsg_queue to NULL after removal
Currently, this does not cause any issues, but I believe it is necessary to
set bsg_queue to NULL after removing it to prevent potential use-after-free
(UAF) access. |
| An integer underflow vulnerability exists in the OLE Document DIFAT Parser functionality of catdoc 0.95. A specially crafted malformed file can lead to heap-based memory corruption. An attacker can provide a malicious file to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix receive ring space parameters when XDP is active
The MTU setting at the time an XDP multi-buffer is attached
determines whether the aggregation ring will be used and the
rx_skb_func handler. This is done in bnxt_set_rx_skb_mode().
If the MTU is later changed, the aggregation ring setting may need
to be changed and it may become out-of-sync with the settings
initially done in bnxt_set_rx_skb_mode(). This may result in
random memory corruption and crashes as the HW may DMA data larger
than the allocated buffer size, such as:
BUG: kernel NULL pointer dereference, address: 00000000000003c0
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 17 PID: 0 Comm: swapper/17 Kdump: loaded Tainted: G S OE 6.1.0-226bf9805506 #1
Hardware name: Wiwynn Delta Lake PVT BZA.02601.0150/Delta Lake-Class1, BIOS F0E_3A12 08/26/2021
RIP: 0010:bnxt_rx_pkt+0xe97/0x1ae0 [bnxt_en]
Code: 8b 95 70 ff ff ff 4c 8b 9d 48 ff ff ff 66 41 89 87 b4 00 00 00 e9 0b f7 ff ff 0f b7 43 0a 49 8b 95 a8 04 00 00 25 ff 0f 00 00 <0f> b7 14 42 48 c1 e2 06 49 03 95 a0 04 00 00 0f b6 42 33f
RSP: 0018:ffffa19f40cc0d18 EFLAGS: 00010202
RAX: 00000000000001e0 RBX: ffff8e2c805c6100 RCX: 00000000000007ff
RDX: 0000000000000000 RSI: ffff8e2c271ab990 RDI: ffff8e2c84f12380
RBP: ffffa19f40cc0e48 R08: 000000000001000d R09: 974ea2fcddfa4cbf
R10: 0000000000000000 R11: ffffa19f40cc0ff8 R12: ffff8e2c94b58980
R13: ffff8e2c952d6600 R14: 0000000000000016 R15: ffff8e2c271ab990
FS: 0000000000000000(0000) GS:ffff8e3b3f840000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000003c0 CR3: 0000000e8580a004 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
__bnxt_poll_work+0x1c2/0x3e0 [bnxt_en]
To address the issue, we now call bnxt_set_rx_skb_mode() within
bnxt_change_mtu() to properly set the AGG rings configuration and
update rx_skb_func based on the new MTU value.
Additionally, BNXT_FLAG_NO_AGG_RINGS is cleared at the beginning of
bnxt_set_rx_skb_mode() to make sure it gets set or cleared based on
the current MTU. |