| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_conncount: Fully initialize struct nf_conncount_tuple in insert_tree()
Since commit b36e4523d4d5 ("netfilter: nf_conncount: fix garbage
collection confirm race"), `cpu` and `jiffies32` were introduced to
the struct nf_conncount_tuple.
The commit made nf_conncount_add() initialize `conn->cpu` and
`conn->jiffies32` when allocating the struct.
In contrast, count_tree() was not changed to initialize them.
By commit 34848d5c896e ("netfilter: nf_conncount: Split insert and
traversal"), count_tree() was split and the relevant allocation
code now resides in insert_tree().
Initialize `conn->cpu` and `conn->jiffies32` in insert_tree().
BUG: KMSAN: uninit-value in find_or_evict net/netfilter/nf_conncount.c:117 [inline]
BUG: KMSAN: uninit-value in __nf_conncount_add+0xd9c/0x2850 net/netfilter/nf_conncount.c:143
find_or_evict net/netfilter/nf_conncount.c:117 [inline]
__nf_conncount_add+0xd9c/0x2850 net/netfilter/nf_conncount.c:143
count_tree net/netfilter/nf_conncount.c:438 [inline]
nf_conncount_count+0x82f/0x1e80 net/netfilter/nf_conncount.c:521
connlimit_mt+0x7f6/0xbd0 net/netfilter/xt_connlimit.c:72
__nft_match_eval net/netfilter/nft_compat.c:403 [inline]
nft_match_eval+0x1a5/0x300 net/netfilter/nft_compat.c:433
expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline]
nft_do_chain+0x426/0x2290 net/netfilter/nf_tables_core.c:288
nft_do_chain_ipv4+0x1a5/0x230 net/netfilter/nft_chain_filter.c:23
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626
nf_hook_slow_list+0x24d/0x860 net/netfilter/core.c:663
NF_HOOK_LIST include/linux/netfilter.h:350 [inline]
ip_sublist_rcv+0x17b7/0x17f0 net/ipv4/ip_input.c:633
ip_list_rcv+0x9ef/0xa40 net/ipv4/ip_input.c:669
__netif_receive_skb_list_ptype net/core/dev.c:5936 [inline]
__netif_receive_skb_list_core+0x15c5/0x1670 net/core/dev.c:5983
__netif_receive_skb_list net/core/dev.c:6035 [inline]
netif_receive_skb_list_internal+0x1085/0x1700 net/core/dev.c:6126
netif_receive_skb_list+0x5a/0x460 net/core/dev.c:6178
xdp_recv_frames net/bpf/test_run.c:280 [inline]
xdp_test_run_batch net/bpf/test_run.c:361 [inline]
bpf_test_run_xdp_live+0x2e86/0x3480 net/bpf/test_run.c:390
bpf_prog_test_run_xdp+0xf1d/0x1ae0 net/bpf/test_run.c:1316
bpf_prog_test_run+0x5e5/0xa30 kernel/bpf/syscall.c:4407
__sys_bpf+0x6aa/0xd90 kernel/bpf/syscall.c:5813
__do_sys_bpf kernel/bpf/syscall.c:5902 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5900 [inline]
__ia32_sys_bpf+0xa0/0xe0 kernel/bpf/syscall.c:5900
ia32_sys_call+0x394d/0x4180 arch/x86/include/generated/asm/syscalls_32.h:358
do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
__do_fast_syscall_32+0xb0/0x110 arch/x86/entry/common.c:387
do_fast_syscall_32+0x38/0x80 arch/x86/entry/common.c:412
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:450
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4121 [inline]
slab_alloc_node mm/slub.c:4164 [inline]
kmem_cache_alloc_noprof+0x915/0xe10 mm/slub.c:4171
insert_tree net/netfilter/nf_conncount.c:372 [inline]
count_tree net/netfilter/nf_conncount.c:450 [inline]
nf_conncount_count+0x1415/0x1e80 net/netfilter/nf_conncount.c:521
connlimit_mt+0x7f6/0xbd0 net/netfilter/xt_connlimit.c:72
__nft_match_eval net/netfilter/nft_compat.c:403 [inline]
nft_match_eval+0x1a5/0x300 net/netfilter/nft_compat.c:433
expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline]
nft_do_chain+0x426/0x2290 net/netfilter/nf_tables_core.c:288
nft_do_chain_ipv4+0x1a5/0x230 net/netfilter/nft_chain_filter.c:23
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626
nf_hook_slow_list+0x24d/0x860 net/netfilter/core.c:663
NF_HOOK_LIST include/linux/netfilter.h:350 [inline]
ip_sublist_rcv+0x17b7/0x17f0 net/ipv4/ip_input.c:633
ip_list_rcv+0x9ef/0xa40 net/ip
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Assign normalized_pix_clk when color depth = 14
[WHY & HOW]
A warning message "WARNING: CPU: 4 PID: 459 at ... /dc_resource.c:3397
calculate_phy_pix_clks+0xef/0x100 [amdgpu]" occurs because the
display_color_depth == COLOR_DEPTH_141414 is not handled. This is
observed in Radeon RX 6600 XT.
It is fixed by assigning pix_clk * (14 * 3) / 24 - same as the rests.
Also fixes the indentation in get_norm_pix_clk.
(cherry picked from commit 274a87eb389f58eddcbc5659ab0b180b37e92775) |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: pci_generic: Use pci_try_reset_function() to avoid deadlock
There are multiple places from where the recovery work gets scheduled
asynchronously. Also, there are multiple places where the caller waits
synchronously for the recovery to be completed. One such place is during
the PM shutdown() callback.
If the device is not alive during recovery_work, it will try to reset the
device using pci_reset_function(). This function internally will take the
device_lock() first before resetting the device. By this time, if the lock
has already been acquired, then recovery_work will get stalled while
waiting for the lock. And if the lock was already acquired by the caller
which waits for the recovery_work to be completed, it will lead to
deadlock.
This is what happened on the X1E80100 CRD device when the device died
before shutdown() callback. Driver core calls the driver's shutdown()
callback while holding the device_lock() leading to deadlock.
And this deadlock scenario can occur on other paths as well, like during
the PM suspend() callback, where the driver core would hold the
device_lock() before calling driver's suspend() callback. And if the
recovery_work was already started, it could lead to deadlock. This is also
observed on the X1E80100 CRD.
So to fix both issues, use pci_try_reset_function() in recovery_work. This
function first checks for the availability of the device_lock() before
trying to reset the device. If the lock is available, it will acquire it
and reset the device. Otherwise, it will return -EAGAIN. If that happens,
recovery_work will fail with the error message "Recovery failed" as not
much could be done. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: virt: acrn: hsm: Use kzalloc to avoid info leak in pmcmd_ioctl
In the "pmcmd_ioctl" function, three memory objects allocated by
kmalloc are initialized by "hcall_get_cpu_state", which are then
copied to user space. The initializer is indeed implemented in
"acrn_hypercall2" (arch/x86/include/asm/acrn.h). There is a risk of
information leakage due to uninitialized bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appleir: Fix potential NULL dereference at raw event handle
Syzkaller reports a NULL pointer dereference issue in input_event().
BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:68 [inline]
BUG: KASAN: null-ptr-deref in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
BUG: KASAN: null-ptr-deref in is_event_supported drivers/input/input.c:67 [inline]
BUG: KASAN: null-ptr-deref in input_event+0x42/0xa0 drivers/input/input.c:395
Read of size 8 at addr 0000000000000028 by task syz-executor199/2949
CPU: 0 UID: 0 PID: 2949 Comm: syz-executor199 Not tainted 6.13.0-rc4-syzkaller-00076-gf097a36ef88d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
kasan_report+0xd9/0x110 mm/kasan/report.c:602
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
instrument_atomic_read include/linux/instrumented.h:68 [inline]
_test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
is_event_supported drivers/input/input.c:67 [inline]
input_event+0x42/0xa0 drivers/input/input.c:395
input_report_key include/linux/input.h:439 [inline]
key_down drivers/hid/hid-appleir.c:159 [inline]
appleir_raw_event+0x3e5/0x5e0 drivers/hid/hid-appleir.c:232
__hid_input_report.constprop.0+0x312/0x440 drivers/hid/hid-core.c:2111
hid_ctrl+0x49f/0x550 drivers/hid/usbhid/hid-core.c:484
__usb_hcd_giveback_urb+0x389/0x6e0 drivers/usb/core/hcd.c:1650
usb_hcd_giveback_urb+0x396/0x450 drivers/usb/core/hcd.c:1734
dummy_timer+0x17f7/0x3960 drivers/usb/gadget/udc/dummy_hcd.c:1993
__run_hrtimer kernel/time/hrtimer.c:1739 [inline]
__hrtimer_run_queues+0x20a/0xae0 kernel/time/hrtimer.c:1803
hrtimer_run_softirq+0x17d/0x350 kernel/time/hrtimer.c:1820
handle_softirqs+0x206/0x8d0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0xfa/0x160 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0x90/0xb0 arch/x86/kernel/apic/apic.c:1049
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702
__mod_timer+0x8f6/0xdc0 kernel/time/timer.c:1185
add_timer+0x62/0x90 kernel/time/timer.c:1295
schedule_timeout+0x11f/0x280 kernel/time/sleep_timeout.c:98
usbhid_wait_io+0x1c7/0x380 drivers/hid/usbhid/hid-core.c:645
usbhid_init_reports+0x19f/0x390 drivers/hid/usbhid/hid-core.c:784
hiddev_ioctl+0x1133/0x15b0 drivers/hid/usbhid/hiddev.c:794
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This happens due to the malformed report items sent by the emulated device
which results in a report, that has no fields, being added to the report list.
Due to this appleir_input_configured() is never called, hidinput_connect()
fails which results in the HID_CLAIMED_INPUT flag is not being set. However,
it does not make appleir_probe() fail and lets the event callback to be
called without the associated input device.
Thus, add a check for the HID_CLAIMED_INPUT flag and leave the event hook
early if the driver didn't claim any input_dev for some reason. Moreover,
some other hid drivers accessing input_dev in their event callbacks do have
similar checks, too.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix type confusion via race condition when using ipc_msg_send_request
req->handle is allocated using ksmbd_acquire_id(&ipc_ida), based on
ida_alloc. req->handle from ksmbd_ipc_login_request and
FSCTL_PIPE_TRANSCEIVE ioctl can be same and it could lead to type confusion
between messages, resulting in access to unexpected parts of memory after
an incorrect delivery. ksmbd check type of ipc response but missing add
continue to check next ipc reponse. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in smb2_lock
If smb_lock->zero_len has value, ->llist of smb_lock is not delete and
flock is old one. It will cause use-after-free on error handling
routine. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix bug on trap in smb2_lock
If lock count is greater than 1, flags could be old value.
It should be checked with flags of smb_lock, not flags.
It will cause bug-on trap from locks_free_lock in error handling
routine. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: aggregator: protect driver attr handlers against module unload
Both new_device_store and delete_device_store touch module global
resources (e.g. gpio_aggregator_lock). To prevent race conditions with
module unload, a reference needs to be held.
Add try_module_get() in these handlers.
For new_device_store, this eliminates what appears to be the most dangerous
scenario: if an id is allocated from gpio_aggregator_idr but
platform_device_register has not yet been called or completed, a concurrent
module unload could fail to unregister/delete the device, leaving behind a
dangling platform device/GPIO forwarder. This can result in various issues.
The following simple reproducer demonstrates these problems:
#!/bin/bash
while :; do
# note: whether 'gpiochip0 0' exists or not does not matter.
echo 'gpiochip0 0' > /sys/bus/platform/drivers/gpio-aggregator/new_device
done &
while :; do
modprobe gpio-aggregator
modprobe -r gpio-aggregator
done &
wait
Starting with the following warning, several kinds of warnings will appear
and the system may become unstable:
------------[ cut here ]------------
list_del corruption, ffff888103e2e980->next is LIST_POISON1 (dead000000000100)
WARNING: CPU: 1 PID: 1327 at lib/list_debug.c:56 __list_del_entry_valid_or_report+0xa3/0x120
[...]
RIP: 0010:__list_del_entry_valid_or_report+0xa3/0x120
[...]
Call Trace:
<TASK>
? __list_del_entry_valid_or_report+0xa3/0x120
? __warn.cold+0x93/0xf2
? __list_del_entry_valid_or_report+0xa3/0x120
? report_bug+0xe6/0x170
? __irq_work_queue_local+0x39/0xe0
? handle_bug+0x58/0x90
? exc_invalid_op+0x13/0x60
? asm_exc_invalid_op+0x16/0x20
? __list_del_entry_valid_or_report+0xa3/0x120
gpiod_remove_lookup_table+0x22/0x60
new_device_store+0x315/0x350 [gpio_aggregator]
kernfs_fop_write_iter+0x137/0x1f0
vfs_write+0x262/0x430
ksys_write+0x60/0xd0
do_syscall_64+0x6c/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
</TASK>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in resource_build_scaling_params
Null pointer dereference issue could occur when pipe_ctx->plane_state
is null. The fix adds a check to ensure 'pipe_ctx->plane_state' is not
null before accessing. This prevents a null pointer dereference.
Found by code review.
(cherry picked from commit 63e6a77ccf239337baa9b1e7787cde9fa0462092) |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix 'scheduling while atomic' in mptcp_pm_nl_append_new_local_addr
If multiple connection requests attempt to create an implicit mptcp
endpoint in parallel, more than one caller may end up in
mptcp_pm_nl_append_new_local_addr because none found the address in
local_addr_list during their call to mptcp_pm_nl_get_local_id. In this
case, the concurrent new_local_addr calls may delete the address entry
created by the previous caller. These deletes use synchronize_rcu, but
this is not permitted in some of the contexts where this function may be
called. During packet recv, the caller may be in a rcu read critical
section and have preemption disabled.
An example stack:
BUG: scheduling while atomic: swapper/2/0/0x00000302
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:117 (discriminator 1))
dump_stack (lib/dump_stack.c:124)
__schedule_bug (kernel/sched/core.c:5943)
schedule_debug.constprop.0 (arch/x86/include/asm/preempt.h:33 kernel/sched/core.c:5970)
__schedule (arch/x86/include/asm/jump_label.h:27 include/linux/jump_label.h:207 kernel/sched/features.h:29 kernel/sched/core.c:6621)
schedule (arch/x86/include/asm/preempt.h:84 kernel/sched/core.c:6804 kernel/sched/core.c:6818)
schedule_timeout (kernel/time/timer.c:2160)
wait_for_completion (kernel/sched/completion.c:96 kernel/sched/completion.c:116 kernel/sched/completion.c:127 kernel/sched/completion.c:148)
__wait_rcu_gp (include/linux/rcupdate.h:311 kernel/rcu/update.c:444)
synchronize_rcu (kernel/rcu/tree.c:3609)
mptcp_pm_nl_append_new_local_addr (net/mptcp/pm_netlink.c:966 net/mptcp/pm_netlink.c:1061)
mptcp_pm_nl_get_local_id (net/mptcp/pm_netlink.c:1164)
mptcp_pm_get_local_id (net/mptcp/pm.c:420)
subflow_check_req (net/mptcp/subflow.c:98 net/mptcp/subflow.c:213)
subflow_v4_route_req (net/mptcp/subflow.c:305)
tcp_conn_request (net/ipv4/tcp_input.c:7216)
subflow_v4_conn_request (net/mptcp/subflow.c:651)
tcp_rcv_state_process (net/ipv4/tcp_input.c:6709)
tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1934)
tcp_v4_rcv (net/ipv4/tcp_ipv4.c:2334)
ip_protocol_deliver_rcu (net/ipv4/ip_input.c:205 (discriminator 1))
ip_local_deliver_finish (include/linux/rcupdate.h:813 net/ipv4/ip_input.c:234)
ip_local_deliver (include/linux/netfilter.h:314 include/linux/netfilter.h:308 net/ipv4/ip_input.c:254)
ip_sublist_rcv_finish (include/net/dst.h:461 net/ipv4/ip_input.c:580)
ip_sublist_rcv (net/ipv4/ip_input.c:640)
ip_list_rcv (net/ipv4/ip_input.c:675)
__netif_receive_skb_list_core (net/core/dev.c:5583 net/core/dev.c:5631)
netif_receive_skb_list_internal (net/core/dev.c:5685 net/core/dev.c:5774)
napi_complete_done (include/linux/list.h:37 include/net/gro.h:449 include/net/gro.h:444 net/core/dev.c:6114)
igb_poll (drivers/net/ethernet/intel/igb/igb_main.c:8244) igb
__napi_poll (net/core/dev.c:6582)
net_rx_action (net/core/dev.c:6653 net/core/dev.c:6787)
handle_softirqs (kernel/softirq.c:553)
__irq_exit_rcu (kernel/softirq.c:588 kernel/softirq.c:427 kernel/softirq.c:636)
irq_exit_rcu (kernel/softirq.c:651)
common_interrupt (arch/x86/kernel/irq.c:247 (discriminator 14))
</IRQ>
This problem seems particularly prevalent if the user advertises an
endpoint that has a different external vs internal address. In the case
where the external address is advertised and multiple connections
already exist, multiple subflow SYNs arrive in parallel which tends to
trigger the race during creation of the first local_addr_list entries
which have the internal address instead.
Fix by skipping the replacement of an existing implicit local address if
called via mptcp_pm_nl_get_local_id. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Add check for mgmt_alloc_skb() in mgmt_remote_name()
Add check for the return value of mgmt_alloc_skb() in
mgmt_remote_name() to prevent null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Add check for mgmt_alloc_skb() in mgmt_device_connected()
Add check for the return value of mgmt_alloc_skb() in
mgmt_device_connected() to prevent null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: add check for rio_add_net() in rio_scan_alloc_net()
The return value of rio_add_net() should be checked. If it fails,
put_device() should be called to free the memory and give up the reference
initialized in rio_add_net(). |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix an API misues when rio_add_net() fails
rio_add_net() calls device_register() and fails when device_register()
fails. Thus, put_device() should be used rather than kfree(). Add
"mport->net = NULL;" to avoid a use after free issue. |
| In the Linux kernel, the following vulnerability has been resolved:
hwpoison, memory_hotplug: lock folio before unmap hwpoisoned folio
Commit b15c87263a69 ("hwpoison, memory_hotplug: allow hwpoisoned pages to
be offlined) add page poison checks in do_migrate_range in order to make
offline hwpoisoned page possible by introducing isolate_lru_page and
try_to_unmap for hwpoisoned page. However folio lock must be held before
calling try_to_unmap. Add it to fix this problem.
Warning will be produced if folio is not locked during unmap:
------------[ cut here ]------------
kernel BUG at ./include/linux/swapops.h:400!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 4 UID: 0 PID: 411 Comm: bash Tainted: G W 6.13.0-rc1-00016-g3c434c7ee82a-dirty #41
Tainted: [W]=WARN
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : try_to_unmap_one+0xb08/0xd3c
lr : try_to_unmap_one+0x3dc/0xd3c
Call trace:
try_to_unmap_one+0xb08/0xd3c (P)
try_to_unmap_one+0x3dc/0xd3c (L)
rmap_walk_anon+0xdc/0x1f8
rmap_walk+0x3c/0x58
try_to_unmap+0x88/0x90
unmap_poisoned_folio+0x30/0xa8
do_migrate_range+0x4a0/0x568
offline_pages+0x5a4/0x670
memory_block_action+0x17c/0x374
memory_subsys_offline+0x3c/0x78
device_offline+0xa4/0xd0
state_store+0x8c/0xf0
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x44/0x54
kernfs_fop_write_iter+0x118/0x1a8
vfs_write+0x3a8/0x4bc
ksys_write+0x6c/0xf8
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xd0
el0t_64_sync_handler+0xc8/0xcc
el0t_64_sync+0x198/0x19c
Code: f9407be0 b5fff320 d4210000 17ffff97 (d4210000)
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-ish-hid: Fix use-after-free issue in ishtp_hid_remove()
The system can experience a random crash a few minutes after the driver is
removed. This issue occurs due to improper handling of memory freeing in
the ishtp_hid_remove() function.
The function currently frees the `driver_data` directly within the loop
that destroys the HID devices, which can lead to accessing freed memory.
Specifically, `hid_destroy_device()` uses `driver_data` when it calls
`hid_ishtp_set_feature()` to power off the sensor, so freeing
`driver_data` beforehand can result in accessing invalid memory.
This patch resolves the issue by storing the `driver_data` in a temporary
variable before calling `hid_destroy_device()`, and then freeing the
`driver_data` after the device is destroyed. |
| In the Linux kernel, the following vulnerability has been resolved:
net: gso: fix ownership in __udp_gso_segment
In __udp_gso_segment the skb destructor is removed before segmenting the
skb but the socket reference is kept as-is. This is an issue if the
original skb is later orphaned as we can hit the following bug:
kernel BUG at ./include/linux/skbuff.h:3312! (skb_orphan)
RIP: 0010:ip_rcv_core+0x8b2/0xca0
Call Trace:
ip_rcv+0xab/0x6e0
__netif_receive_skb_one_core+0x168/0x1b0
process_backlog+0x384/0x1100
__napi_poll.constprop.0+0xa1/0x370
net_rx_action+0x925/0xe50
The above can happen following a sequence of events when using
OpenVSwitch, when an OVS_ACTION_ATTR_USERSPACE action precedes an
OVS_ACTION_ATTR_OUTPUT action:
1. OVS_ACTION_ATTR_USERSPACE is handled (in do_execute_actions): the skb
goes through queue_gso_packets and then __udp_gso_segment, where its
destructor is removed.
2. The segments' data are copied and sent to userspace.
3. OVS_ACTION_ATTR_OUTPUT is handled (in do_execute_actions) and the
same original skb is sent to its path.
4. If it later hits skb_orphan, we hit the bug.
Fix this by also removing the reference to the socket in
__udp_gso_segment. |
| In the Linux kernel, the following vulnerability has been resolved:
llc: do not use skb_get() before dev_queue_xmit()
syzbot is able to crash hosts [1], using llc and devices
not supporting IFF_TX_SKB_SHARING.
In this case, e1000 driver calls eth_skb_pad(), while
the skb is shared.
Simply replace skb_get() by skb_clone() in net/llc/llc_s_ac.c
Note that e1000 driver might have an issue with pktgen,
because it does not clear IFF_TX_SKB_SHARING, this is an
orthogonal change.
We need to audit other skb_get() uses in net/llc.
[1]
kernel BUG at net/core/skbuff.c:2178 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 16371 Comm: syz.2.2764 Not tainted 6.14.0-rc4-syzkaller-00052-gac9c34d1e45a #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:pskb_expand_head+0x6ce/0x1240 net/core/skbuff.c:2178
Call Trace:
<TASK>
__skb_pad+0x18a/0x610 net/core/skbuff.c:2466
__skb_put_padto include/linux/skbuff.h:3843 [inline]
skb_put_padto include/linux/skbuff.h:3862 [inline]
eth_skb_pad include/linux/etherdevice.h:656 [inline]
e1000_xmit_frame+0x2d99/0x5800 drivers/net/ethernet/intel/e1000/e1000_main.c:3128
__netdev_start_xmit include/linux/netdevice.h:5151 [inline]
netdev_start_xmit include/linux/netdevice.h:5160 [inline]
xmit_one net/core/dev.c:3806 [inline]
dev_hard_start_xmit+0x9a/0x7b0 net/core/dev.c:3822
sch_direct_xmit+0x1ae/0xc30 net/sched/sch_generic.c:343
__dev_xmit_skb net/core/dev.c:4045 [inline]
__dev_queue_xmit+0x13d4/0x43e0 net/core/dev.c:4621
dev_queue_xmit include/linux/netdevice.h:3313 [inline]
llc_sap_action_send_test_c+0x268/0x320 net/llc/llc_s_ac.c:144
llc_exec_sap_trans_actions net/llc/llc_sap.c:153 [inline]
llc_sap_next_state net/llc/llc_sap.c:182 [inline]
llc_sap_state_process+0x239/0x510 net/llc/llc_sap.c:209
llc_ui_sendmsg+0xd0d/0x14e0 net/llc/af_llc.c:993
sock_sendmsg_nosec net/socket.c:718 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: make sure ptp clock is unregister and freed if hclge_ptp_get_cycle returns an error
During the initialization of ptp, hclge_ptp_get_cycle might return an error
and returned directly without unregister clock and free it. To avoid that,
call hclge_ptp_destroy_clock to unregist and free clock if
hclge_ptp_get_cycle failed. |