| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
xen/gntdev: Prevent leaking grants
Prior to this commit, if a grant mapping operation failed partially,
some of the entries in the map_ops array would be invalid, whereas all
of the entries in the kmap_ops array would be valid. This in turn would
cause the following logic in gntdev_map_grant_pages to become invalid:
for (i = 0; i < map->count; i++) {
if (map->map_ops[i].status == GNTST_okay) {
map->unmap_ops[i].handle = map->map_ops[i].handle;
if (!use_ptemod)
alloced++;
}
if (use_ptemod) {
if (map->kmap_ops[i].status == GNTST_okay) {
if (map->map_ops[i].status == GNTST_okay)
alloced++;
map->kunmap_ops[i].handle = map->kmap_ops[i].handle;
}
}
}
...
atomic_add(alloced, &map->live_grants);
Assume that use_ptemod is true (i.e., the domain mapping the granted
pages is a paravirtualized domain). In the code excerpt above, note that
the "alloced" variable is only incremented when both kmap_ops[i].status
and map_ops[i].status are set to GNTST_okay (i.e., both mapping
operations are successful). However, as also noted above, there are
cases where a grant mapping operation fails partially, breaking the
assumption of the code excerpt above.
The aforementioned causes map->live_grants to be incorrectly set. In
some cases, all of the map_ops mappings fail, but all of the kmap_ops
mappings succeed, meaning that live_grants may remain zero. This in turn
makes it impossible to unmap the successfully grant-mapped pages pointed
to by kmap_ops, because unmap_grant_pages has the following snippet of
code at its beginning:
if (atomic_read(&map->live_grants) == 0)
return; /* Nothing to do */
In other cases where only some of the map_ops mappings fail but all
kmap_ops mappings succeed, live_grants is made positive, but when the
user requests unmapping the grant-mapped pages, __unmap_grant_pages_done
will then make map->live_grants negative, because the latter function
does not check if all of the pages that were requested to be unmapped
were actually unmapped, and the same function unconditionally subtracts
"data->count" (i.e., a value that can be greater than map->live_grants)
from map->live_grants. The side effects of a negative live_grants value
have not been studied.
The net effect of all of this is that grant references are leaked in one
of the above conditions. In Qubes OS v4.1 (which uses Xen's grant
mechanism extensively for X11 GUI isolation), this issue manifests
itself with warning messages like the following to be printed out by the
Linux kernel in the VM that had granted pages (that contain X11 GUI
window data) to dom0: "g.e. 0x1234 still pending", especially after the
user rapidly resizes GUI VM windows (causing some grant-mapping
operations to partially or completely fail, due to the fact that the VM
unshares some of the pages as part of the window resizing, making the
pages impossible to grant-map from dom0).
The fix for this issue involves counting all successful map_ops and
kmap_ops mappings separately, and then adding the sum to live_grants.
During unmapping, only the number of successfully unmapped grants is
subtracted from live_grants. The code is also modified to check for
negative live_grants values after the subtraction and warn the user. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/meson: remove drm bridges at aggregate driver unbind time
drm bridges added by meson_encoder_hdmi_init and meson_encoder_cvbs_init
were not manually removed at module unload time, which caused dangling
references to freed memory to remain linked in the global bridge_list.
When loading the driver modules back in, the same functions would again
call drm_bridge_add, and when traversing the global bridge_list, would
end up peeking into freed memory.
Once again KASAN revealed the problem:
[ +0.000095] =============================================================
[ +0.000008] BUG: KASAN: use-after-free in __list_add_valid+0x9c/0x120
[ +0.000018] Read of size 8 at addr ffff00003da291f0 by task modprobe/2483
[ +0.000018] CPU: 3 PID: 2483 Comm: modprobe Tainted: G C O 5.19.0-rc6-lrmbkasan+ #1
[ +0.000011] Hardware name: Hardkernel ODROID-N2Plus (DT)
[ +0.000008] Call trace:
[ +0.000006] dump_backtrace+0x1ec/0x280
[ +0.000012] show_stack+0x24/0x80
[ +0.000008] dump_stack_lvl+0x98/0xd4
[ +0.000011] print_address_description.constprop.0+0x80/0x520
[ +0.000011] print_report+0x128/0x260
[ +0.000008] kasan_report+0xb8/0xfc
[ +0.000008] __asan_report_load8_noabort+0x3c/0x50
[ +0.000009] __list_add_valid+0x9c/0x120
[ +0.000009] drm_bridge_add+0x6c/0x104 [drm]
[ +0.000165] dw_hdmi_probe+0x1900/0x2360 [dw_hdmi]
[ +0.000022] meson_dw_hdmi_bind+0x520/0x814 [meson_dw_hdmi]
[ +0.000014] component_bind+0x174/0x520
[ +0.000012] component_bind_all+0x1a8/0x38c
[ +0.000010] meson_drv_bind_master+0x5e8/0xb74 [meson_drm]
[ +0.000032] meson_drv_bind+0x20/0x2c [meson_drm]
[ +0.000027] try_to_bring_up_aggregate_device+0x19c/0x390
[ +0.000010] component_master_add_with_match+0x1c8/0x284
[ +0.000009] meson_drv_probe+0x274/0x280 [meson_drm]
[ +0.000026] platform_probe+0xd0/0x220
[ +0.000009] really_probe+0x3ac/0xa80
[ +0.000009] __driver_probe_device+0x1f8/0x400
[ +0.000009] driver_probe_device+0x68/0x1b0
[ +0.000009] __driver_attach+0x20c/0x480
[ +0.000008] bus_for_each_dev+0x114/0x1b0
[ +0.000009] driver_attach+0x48/0x64
[ +0.000008] bus_add_driver+0x390/0x564
[ +0.000009] driver_register+0x1a8/0x3e4
[ +0.000009] __platform_driver_register+0x6c/0x94
[ +0.000008] meson_drm_platform_driver_init+0x3c/0x1000 [meson_drm]
[ +0.000027] do_one_initcall+0xc4/0x2b0
[ +0.000011] do_init_module+0x154/0x570
[ +0.000011] load_module+0x1a78/0x1ea4
[ +0.000008] __do_sys_init_module+0x184/0x1cc
[ +0.000009] __arm64_sys_init_module+0x78/0xb0
[ +0.000009] invoke_syscall+0x74/0x260
[ +0.000009] el0_svc_common.constprop.0+0xcc/0x260
[ +0.000008] do_el0_svc+0x50/0x70
[ +0.000007] el0_svc+0x68/0x1a0
[ +0.000012] el0t_64_sync_handler+0x11c/0x150
[ +0.000008] el0t_64_sync+0x18c/0x190
[ +0.000016] Allocated by task 879:
[ +0.000008] kasan_save_stack+0x2c/0x5c
[ +0.000011] __kasan_kmalloc+0x90/0xd0
[ +0.000007] __kmalloc+0x278/0x4a0
[ +0.000011] mpi_resize+0x13c/0x1d0
[ +0.000011] mpi_powm+0xd24/0x1570
[ +0.000009] rsa_enc+0x1a4/0x30c
[ +0.000009] pkcs1pad_verify+0x3f0/0x580
[ +0.000009] public_key_verify_signature+0x7a8/0xba4
[ +0.000010] public_key_verify_signature_2+0x40/0x60
[ +0.000008] verify_signature+0xb4/0x114
[ +0.000008] pkcs7_validate_trust_one.constprop.0+0x3b8/0x574
[ +0.000009] pkcs7_validate_trust+0xb8/0x15c
[ +0.000008] verify_pkcs7_message_sig+0xec/0x1b0
[ +0.000012] verify_pkcs7_signature+0x78/0xac
[ +0.000007] mod_verify_sig+0x110/0x190
[ +0.000009] module_sig_check+0x114/0x1e0
[ +0.000009] load_module+0xa0/0x1ea4
[ +0.000008] __do_sys_init_module+0x184/0x1cc
[ +0.000008] __arm64_sys_init_module+0x78/0xb0
[ +0.000008] invoke_syscall+0x74/0x260
[ +0.000009] el0_svc_common.constprop.0+0x1a8/0x260
[ +0.000008] do_el0_svc+0x50/0x70
[ +0.000007] el0_svc+0x68/0x1a0
[ +0.000009] el0t_64_sync_handler+0x11c/0x150
[ +0.000009] el0t_64
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix reading strings from synthetic events
The follow commands caused a crash:
# cd /sys/kernel/tracing
# echo 's:open char file[]' > dynamic_events
# echo 'hist:keys=common_pid:file=filename:onchange($file).trace(open,$file)' > events/syscalls/sys_enter_openat/trigger'
# echo 1 > events/synthetic/open/enable
BOOM!
The problem is that the synthetic event field "char file[]" will read
the value given to it as a string without any memory checks to make sure
the address is valid. The above example will pass in the user space
address and the sythetic event code will happily call strlen() on it
and then strscpy() where either one will cause an oops when accessing
user space addresses.
Use the helper functions from trace_kprobe and trace_eprobe that can
read strings safely (and actually succeed when the address is from user
space and the memory is mapped in).
Now the above can show:
packagekitd-1721 [000] ...2. 104.597170: open: file=/usr/lib/rpm/fileattrs/cmake.attr
in:imjournal-978 [006] ...2. 104.599642: open: file=/var/lib/rsyslog/imjournal.state.tmp
packagekitd-1721 [000] ...2. 104.626308: open: file=/usr/lib/rpm/fileattrs/debuginfo.attr |
| In the Linux kernel, the following vulnerability has been resolved:
media: ov8865: Fix an error handling path in ov8865_probe()
The commit in Fixes also introduced some new error handling which should
goto the existing error handling path.
Otherwise some resources leak. |
| KubeVirt is a virtual machine management add-on for Kubernetes. Prior to 1.5.3 and 1.6.1, a vulnerability was discovered that allows a VM to read arbitrary files from the virt-launcher pod's file system. This issue stems from improper symlink handling when mounting PVC disks into a VM. Specifically, if a malicious user has full or partial control over the contents of a PVC, they can create a symbolic link that points to a file within the virt-launcher pod's file system. Since libvirt can treat regular files as block devices, any file on the pod's file system that is symlinked in this way can be mounted into the VM and subsequently read. Although a security mechanism exists where VMs are executed as an unprivileged user with UID 107 inside the virt-launcher container, limiting the scope of accessible resources, this restriction is bypassed due to a second vulnerability. The latter causes the ownership of any file intended for mounting to be changed to the unprivileged user with UID 107 prior to mounting. As a result, an attacker can gain access to and read arbitrary files located within the virt-launcher pod's file system or on a mounted PVC from within the guest VM. This vulnerability is fixed in 1.5.3 and 1.6.1. |
| A security flaw has been discovered in macrozheng mall-swarm and mall up to 1.0.3. This impacts the function detail of the file /order/detail/ of the component Order Details Handler. Performing manipulation of the argument orderId results in improper authorization. It is possible to initiate the attack remotely. The exploit has been released to the public and may be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was detected in macrozheng mall-swarm and mall up to 1.0.3. Affected by this issue is the function paySuccess of the file /order/paySuccess. The manipulation of the argument orderID results in improper authorization. The attack can be launched remotely. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security vulnerability has been detected in macrozheng mall-swarm and mall up to 1.0.3. Affected by this vulnerability is the function cancelOrder of the file /order/cancelOrder. The manipulation of the argument orderId leads to improper authorization. The attack can be initiated remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| The verify function in lib/elliptic/eddsa/index.js in the Elliptic package before 6.5.6 for Node.js omits "sig.S().gte(sig.eddsa.curve.n) || sig.S().isNeg()" validation. |
| The Elliptic package 6.5.7 for Node.js, in its for ECDSA implementation, does not correctly verify valid signatures if the hash contains at least four leading 0 bytes and when the order of the elliptic curve's base point is smaller than the hash, because of an _truncateToN anomaly. This leads to valid signatures being rejected. Legitimate transactions or communications may be incorrectly flagged as invalid. |
| KubeVirt is a virtual machine management add-on for Kubernetes. Versions 1.5.3 and below, and 1.6.0 contained a flawed implementation of the Kubernetes aggregation layer's authentication flow which could enable bypass of RBAC controls. It was discovered that the virt-api component fails to correctly authenticate the client when receiving API requests over mTLS. In particular, it fails to validate the CN (Common Name) field in the received client TLS certificates against the set of allowed values defined in the extension-apiserver-authentication configmap. Failre to validate certain fields in the client TLS certificate may allow an attacker to bypass existing RBAC controls by directly communicating with the aggregated API server, impersonating the Kubernetes API server and its aggregator component. This issue is fixed in versions 1.5.3 and 1.6.1. |
| The fetch function in file thinkphp\library\think\Template.php in ThinkPHP 5.0.24 allows attackers to read arbitrary files via crafted file path in a template value. |
| The read function in file thinkphp\library\think\template\driver\File.php in ThinkPHP 5.0.24 contains a remote code execution vulnerability. |
| Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an improper authorization flaw in the comment creation endpoint allows authenticated users to impersonate any other user by altering the authorName field in the API request. This enables attackers to post comments under arbitrary usernames, including privileged ones such as administrators, potentially misleading other users and enabling phishing or social engineering attacks. This issue has been patched in version 4.5.4. |
| Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an authorization flaw in the comment deletion API allows any authenticated user to delete comments belonging to other users, including poll owners and administrators. The endpoint relies solely on the comment ID for deletion and does not validate whether the requesting user owns the comment or has permission to remove it. This issue has been patched in version 4.5.4. |
| Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an insecure direct object reference (IDOR) vulnerability allows any authenticated user to delete arbitrary participants from polls without ownership verification. The endpoint relies solely on a participant ID to authorize deletions, enabling attackers to remove other users (including poll owners) from polls. This impacts the integrity and availability of poll participation data. This issue has been patched in version 4.5.4. |
| Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an Insecure Direct Object Reference (IDOR) vulnerability in the poll duplication endpoint (/api/trpc/polls.duplicate) allows any authenticated user to duplicate polls they do not own by modifying the pollId parameter. This effectively bypasses access control and lets unauthorized users clone private or administrative polls. This issue has been patched in version 4.5.4. |
| Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an Insecure Direct Object Reference (IDOR) vulnerability exists in the poll finalization feature of the application. Any authenticated user can finalize a poll they do not own by manipulating the pollId parameter in the request. This allows unauthorized users to finalize other users’ polls and convert them into events without proper authorization checks, potentially disrupting user workflows and causing data integrity and availability issues. This issue has been patched in version 4.5.4. |
| Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an insecure direct object reference (IDOR) vulnerability allows any authenticated user to modify other participants’ votes in polls without authorization. The backend relies solely on the participantId parameter to identify which votes to update, without verifying ownership or poll permissions. This allows an attacker to alter poll results in their favor, directly compromising data integrity. This issue has been patched in version 4.5.4. |
| A vulnerability has been found in jflyfox jfinal_cms 5.0.1 and classified as problematic. This vulnerability affects unknown code of the file HOME.java. The manipulation of the argument Logout leads to cross-site request forgery. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |