CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A vulnerability was detected in fuyang_lipengjun platform 1.0. Impacted is the function TopicController of the file /topic/queryAll. The manipulation results in improper authorization. The attack can be executed remotely. The exploit is now public and may be used. |
A security vulnerability has been detected in fuyang_lipengjun platform 1.0. This issue affects the function UserCouponController of the file /usercoupon/queryAll. The manipulation leads to improper authorization. Remote exploitation of the attack is possible. The exploit has been disclosed publicly and may be used. |
Insecure Direct Object Reference (IDOR) vulnerability with commerce order notes in Liferay Portal 7.3.5 through 7.4.3.112, and Liferay DXP 2023.Q4.0 through 2023.Q4.8, 2023.Q3.1 through 2023.Q3.10, and 7.4 GA through update 92 allows remote authenticated users to from one virtual instance to add a note to an order in a different virtual instance via the _com_liferay_commerce_order_web_internal_portlet_CommerceOrderPortlet_commerceOrderId parameter. |
Batch Engine in Liferay Portal 7.4.0 through 7.4.3.112, and Liferay DXP 2023.Q4.0 through 2023.Q4.7, 2023.Q3.1 through 2023.Q3.10, and 7.4 GA through update 92 does not properly check permission with import and export tasks, which allows remote authenticated users to access the exported data via the REST APIs. |
A weakness has been identified in Campcodes Online Learning Management System 1.0. This vulnerability affects unknown code of the file /admin/admin_user.php. Executing manipulation of the argument firstname can lead to sql injection. The attack may be launched remotely. The exploit has been made available to the public and could be exploited. |
A security flaw has been discovered in Jinher OA 2.0. This affects an unknown part of the file /c6/Jhsoft.Web.module/ToolBar/GetWordFileName.aspx/?text=GetUrl&style=add of the component XML Handler. Performing manipulation results in xml external entity reference. The attack may be initiated remotely. The exploit has been released to the public and may be exploited. |
The Internal Links Manager plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 3.0.1. This is due to missing or incorrect nonce validation on the link deletion functionality in the process_bulk_action() function. This makes it possible for unauthenticated attackers to delete SEO links via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Custom Login And Signup Widget plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0. This is due to missing or incorrect nonce validation in the /frndzk_adminclsw.php file. This makes it possible for unauthenticated attackers to change the email and username settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Browser Sniff plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 2.3. This is due to missing or incorrect nonce validation on a function. This makes it possible for unauthenticated attackers to update settings and inject malicious web scripts via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The osTicket WP Bridge plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.9.2. This is due to missing or incorrect nonce validation on a function. This makes it possible for unauthenticated attackers to update settings and inject malicious web scripts via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
A deserialization vulnerability exists in h2oai/h2o-3 versions <= 3.46.0.8, allowing attackers to read arbitrary system files and execute arbitrary code. The vulnerability arises from improper handling of JDBC connection parameters, which can be exploited by bypassing regular expression checks and using double URL encoding. This issue impacts all users of the affected versions. |
MapServer is a system for developing web-based GIS applications. Prior to 8.4.1, the XML Filter Query directive PropertyName is vulnerably to Boolean-based SQL injection. It seems like expression checking is bypassed by introducing double quote characters in the PropertyName. Allowing to manipulate backend database queries. This vulnerability is fixed in 8.4.1. |
The Cloudflare Vite plugin enables a full-featured integration between Vite and the Workers runtime. When utilising the Cloudflare Vite plugin in its default configuration, all files are exposed by the local dev server, including files in the root directory that contain secret information such as .env and .dev.vars. This vulnerability is fixed in 1.6.0. |
AliasVault is a privacy-first password manager with built-in email aliasing. A server-side request forgery (SSRF) vulnerability exists in the favicon extraction feature of AliasVault API versions 0.23.0 and lower. The extractor fetches a user-supplied URL, parses the returned HTML, and follows <link rel="icon" href="…">. Although the initial URL is validated to allow only HTTP/HTTPS with default ports, the extractor automatically follows redirects and does not block requests to loopback or internal IP ranges. An authenticated, low-privileged user can exploit this behavior to coerce the backend into making HTTP(S) requests to arbitrary internal hosts and non-default ports. If the target host serves a favicon or any other valid image, the response is returned to the attacker in Base64 form. Even when no data is returned, timing and error behavior can be abused to map internal services. This vulnerability only affects self-hosted AliasVault instances that are reachable from the public internet with public user registration enabled. Private/internal deployments without public sign-ups are not directly exploitable. This issue has been fixed in AliasVault release 0.23.1. |
Starch versions 0.14 and earlier generate session ids insecurely.
The default session id generator returns a SHA-1 hash seeded with a counter, the epoch time, the built-in rand function, the PID, and internal Perl reference addresses. The PID will come from a small set of numbers, and the epoch time may be guessed, if it is not leaked from the HTTP Date header. The built-in rand function is unsuitable for cryptographic usage.
Predicable session ids could allow an attacker to gain access to systems. |
A vulnerability was identified in huggingface LeRobot up to 0.3.3. Affected by this vulnerability is an unknown functionality of the file lerobot/common/robot_devices/robots/lekiwi_remote.py of the component ZeroMQ Socket Handler. The manipulation leads to missing authentication. The attack can only be initiated within the local network. The vendor was contacted early about this disclosure but did not respond in any way. |
Tandoor Recipes 2.0.0-alpha-1, fixed in 2.0.0-alpha-2, is vulnerable to privilege escalation. This is due to the rework of the API, which resulted in the User Profile API Endpoint containing two boolean values indicating whether a user is staff or administrative. Consequently, any user can escalate their privileges to the highest level. |
Vasion Print (formerly PrinterLogic) Virtual Appliance Host and Application (VA and SaaS deployments) run many Docker containers on shared internal networks without firewalling or segmentation between instances. A compromise of any single container allows direct access to internal services (HTTP, Redis, MySQL, etc.) on the overlay network. From a compromised container, an attacker can reach and exploit other services, enabling lateral movement, data theft, and system-wide compromise. |
In the Linux kernel, the following vulnerability has been resolved:
mm: move page table sync declarations to linux/pgtable.h
During our internal testing, we started observing intermittent boot
failures when the machine uses 4-level paging and has a large amount of
persistent memory:
BUG: unable to handle page fault for address: ffffe70000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP NOPTI
RIP: 0010:__init_single_page+0x9/0x6d
Call Trace:
<TASK>
__init_zone_device_page+0x17/0x5d
memmap_init_zone_device+0x154/0x1bb
pagemap_range+0x2e0/0x40f
memremap_pages+0x10b/0x2f0
devm_memremap_pages+0x1e/0x60
dev_dax_probe+0xce/0x2ec [device_dax]
dax_bus_probe+0x6d/0xc9
[... snip ...]
</TASK>
It turns out that the kernel panics while initializing vmemmap (struct
page array) when the vmemmap region spans two PGD entries, because the new
PGD entry is only installed in init_mm.pgd, but not in the page tables of
other tasks.
And looking at __populate_section_memmap():
if (vmemmap_can_optimize(altmap, pgmap))
// does not sync top level page tables
r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
else
// sync top level page tables in x86
r = vmemmap_populate(start, end, nid, altmap);
In the normal path, vmemmap_populate() in arch/x86/mm/init_64.c
synchronizes the top level page table (See commit 9b861528a801 ("x86-64,
mem: Update all PGDs for direct mapping and vmemmap mapping changes")) so
that all tasks in the system can see the new vmemmap area.
However, when vmemmap_can_optimize() returns true, the optimized path
skips synchronization of top-level page tables. This is because
vmemmap_populate_compound_pages() is implemented in core MM code, which
does not handle synchronization of the top-level page tables. Instead,
the core MM has historically relied on each architecture to perform this
synchronization manually.
We're not the first party to encounter a crash caused by not-sync'd top
level page tables: earlier this year, Gwan-gyeong Mun attempted to address
the issue [1] [2] after hitting a kernel panic when x86 code accessed the
vmemmap area before the corresponding top-level entries were synced. At
that time, the issue was believed to be triggered only when struct page
was enlarged for debugging purposes, and the patch did not get further
updates.
It turns out that current approach of relying on each arch to handle the
page table sync manually is fragile because 1) it's easy to forget to sync
the top level page table, and 2) it's also easy to overlook that the
kernel should not access the vmemmap and direct mapping areas before the
sync.
# The solution: Make page table sync more code robust and harder to miss
To address this, Dave Hansen suggested [3] [4] introducing
{pgd,p4d}_populate_kernel() for updating kernel portion of the page tables
and allow each architecture to explicitly perform synchronization when
installing top-level entries. With this approach, we no longer need to
worry about missing the sync step, reducing the risk of future
regressions.
The new interface reuses existing ARCH_PAGE_TABLE_SYNC_MASK,
PGTBL_P*D_MODIFIED and arch_sync_kernel_mappings() facility used by
vmalloc and ioremap to synchronize page tables.
pgd_populate_kernel() looks like this:
static inline void pgd_populate_kernel(unsigned long addr, pgd_t *pgd,
p4d_t *p4d)
{
pgd_populate(&init_mm, pgd, p4d);
if (ARCH_PAGE_TABLE_SYNC_MASK & PGTBL_PGD_MODIFIED)
arch_sync_kernel_mappings(addr, addr);
}
It is worth noting that vmalloc() and apply_to_range() carefully
synchronizes page tables by calling p*d_alloc_track() and
arch_sync_kernel_mappings(), and thus they are not affected by
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix use-after-free in l2cap_sock_cleanup_listen()
syzbot reported the splat below without a repro.
In the splat, a single thread calling bt_accept_dequeue() freed sk
and touched it after that.
The root cause would be the racy l2cap_sock_cleanup_listen() call
added by the cited commit.
bt_accept_dequeue() is called under lock_sock() except for
l2cap_sock_release().
Two threads could see the same socket during the list iteration
in bt_accept_dequeue():
CPU1 CPU2 (close())
---- ----
sock_hold(sk) sock_hold(sk);
lock_sock(sk) <-- block close()
sock_put(sk)
bt_accept_unlink(sk)
sock_put(sk) <-- refcnt by bt_accept_enqueue()
release_sock(sk)
lock_sock(sk)
sock_put(sk)
bt_accept_unlink(sk)
sock_put(sk) <-- last refcnt
bt_accept_unlink(sk) <-- UAF
Depending on the timing, the other thread could show up in the
"Freed by task" part.
Let's call l2cap_sock_cleanup_listen() under lock_sock() in
l2cap_sock_release().
[0]:
BUG: KASAN: slab-use-after-free in debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline]
BUG: KASAN: slab-use-after-free in do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115
Read of size 4 at addr ffff88803b7eb1c4 by task syz.5.3276/16995
CPU: 3 UID: 0 PID: 16995 Comm: syz.5.3276 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xcd/0x630 mm/kasan/report.c:482
kasan_report+0xe0/0x110 mm/kasan/report.c:595
debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline]
do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115
spin_lock_bh include/linux/spinlock.h:356 [inline]
release_sock+0x21/0x220 net/core/sock.c:3746
bt_accept_dequeue+0x505/0x600 net/bluetooth/af_bluetooth.c:312
l2cap_sock_cleanup_listen+0x5c/0x2a0 net/bluetooth/l2cap_sock.c:1451
l2cap_sock_release+0x5c/0x210 net/bluetooth/l2cap_sock.c:1425
__sock_release+0xb3/0x270 net/socket.c:649
sock_close+0x1c/0x30 net/socket.c:1439
__fput+0x3ff/0xb70 fs/file_table.c:468
task_work_run+0x14d/0x240 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43
exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline]
do_syscall_64+0x3f6/0x4c0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f2accf8ebe9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffdb6cb1378 EFLAGS: 00000246 ORIG_RAX: 00000000000001b4
RAX: 0000000000000000 RBX: 00000000000426fb RCX: 00007f2accf8ebe9
RDX: 0000000000000000 RSI: 000000000000001e RDI: 0000000000000003
RBP: 00007f2acd1b7da0 R08: 0000000000000001 R09: 00000012b6cb166f
R10: 0000001b30e20000 R11: 0000000000000246 R12: 00007f2acd1b609c
R13: 00007f2acd1b6090 R14: ffffffffffffffff R15: 00007ffdb6cb1490
</TASK>
Allocated by task 5326:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:388 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:405
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4365 [inline]
__kmalloc_nopro
---truncated--- |