| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| [This CNA information record relates to multiple CVEs; the
text explains which aspects/vulnerabilities correspond to which CVE.]
There are multiple issues related to the handling and accessing of guest
memory pages in the viridian code:
1. A NULL pointer dereference in the updating of the reference TSC area.
This is CVE-2025-27466.
2. A NULL pointer dereference by assuming the SIM page is mapped when
a synthetic timer message has to be delivered. This is
CVE-2025-58142.
3. A race in the mapping of the reference TSC page, where a guest can
get Xen to free a page while still present in the guest physical to
machine (p2m) page tables. This is CVE-2025-58143. |
| [This CNA information record relates to multiple CVEs; the
text explains which aspects/vulnerabilities correspond to which CVE.]
There are multiple issues related to the handling and accessing of guest
memory pages in the viridian code:
1. A NULL pointer dereference in the updating of the reference TSC area.
This is CVE-2025-27466.
2. A NULL pointer dereference by assuming the SIM page is mapped when
a synthetic timer message has to be delivered. This is
CVE-2025-58142.
3. A race in the mapping of the reference TSC page, where a guest can
get Xen to free a page while still present in the guest physical to
machine (p2m) page tables. This is CVE-2025-58143. |
| NULL pointer dereference in the UEFI firmware for some Intel(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access. |
| In the Linux kernel, the following vulnerability has been resolved:
nfp: bpf: Add check for nfp_app_ctrl_msg_alloc()
Add check for the return value of nfp_app_ctrl_msg_alloc() in
nfp_bpf_cmsg_alloc() to prevent null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
OPP: fix dev_pm_opp_find_bw_*() when bandwidth table not initialized
If a driver calls dev_pm_opp_find_bw_ceil/floor() the retrieve bandwidth
from the OPP table but the bandwidth table was not created because the
interconnect properties were missing in the OPP consumer node, the
kernel will crash with:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004
...
pc : _read_bw+0x8/0x10
lr : _opp_table_find_key+0x9c/0x174
...
Call trace:
_read_bw+0x8/0x10 (P)
_opp_table_find_key+0x9c/0x174 (L)
_find_key+0x98/0x168
dev_pm_opp_find_bw_ceil+0x50/0x88
...
In order to fix the crash, create an assert function to check
if the bandwidth table was created before trying to get a
bandwidth with _read_bw(). |
| In the Linux kernel, the following vulnerability has been resolved:
dpll: fix xa_alloc_cyclic() error handling
In case of returning 1 from xa_alloc_cyclic() (wrapping) ERR_PTR(1) will
be returned, which will cause IS_ERR() to be false. Which can lead to
dereference not allocated pointer (pin).
Fix it by checking if err is lower than zero.
This wasn't found in real usecase, only noticed. Credit to Pierre. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: fix xa_alloc_cyclic() error handling
In case of returning 1 from xa_alloc_cyclic() (wrapping) ERR_PTR(1) will
be returned, which will cause IS_ERR() to be false. Which can lead to
dereference not allocated pointer (rel).
Fix it by checking if err is lower than zero.
This wasn't found in real usecase, only noticed. Credit to Pierre. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/mm: Fix null-pointer dereference in pgtable_cache_add
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Have trace_event_file have ref counters
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo 'p:sched schedule' > kprobe_events
# exec 5>>events/kprobes/sched/enable
# > kprobe_events
# exec 5>&-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn't matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor. |
| D-Link DIR-823G A1V1.0.2B05 was discovered to contain Null-pointer dereferences in sub_4484A8(). This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
| D-Link DIR-823G A1V1.0.2B05 was discovered to contain a Null-pointer dereferences in sub_4110f4(). This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
| D-Link DIR-823G A1V1.0.2B05 was discovered to contain Null-pointer dereferences in sub_42AF30(). This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
| D-Link DIR-823G A1V1.0.2B05 was discovered to contain Null-pointer dereferences in sub_4484A8(). This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
| Null pointer dereference for some Intel(R) Trace Analyzer and Collector software before version 2021.8.0 published Dec 2022 may allow an authenticated user to potentially enable information disclosure via local access. |
| Null pointer dereference in the Intel(R) VROC software before version 7.7.6.1003 may allow an authenticated user to potentially enable escalation of privilege via local access. |
| JGraphT Core v1.5.2 was discovered to contain a NullPointerException via the component org.jgrapht.alg.util.ToleranceDoubleComparator::compare(Double, Double). NOTE: this is disputed by multiple third parties who believe there was not reasonable evidence to determine the existence of a vulnerability. The submission may have been based on a tool that is not sufficiently robust for vulnerability identification. |
| NULL pointer dereference in some Intel(R) oneVPL software before version 23.3.5 may allow an authenticated user to potentially enable information disclosure via local access. |
| Null pointer dereference for some Intel(R) CST software before version 2.1.10300 may allow an authenticated user to potentially enable denial of service via local access. |
| NULL pointer dereference in some Intel(R) Arc(TM) & Iris(R) Xe Graphics - WHQL - Windows Drviers before version 31.0.101.4255 may allow authenticated user to potentially enable denial of service via local access. |
| NULL pointer dereference in some Intel(R) Arc(TM) Control software before version 1.73.5335.2 may allow an authenticated user to potentially enable denial of service via local access. |