| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| OpenPLC Runtime v3 contains an input validation flaw in the /upload-program-action endpoint: the epoch_time field supplied during program uploads is not validated and can be crafted to induce corruption of the programs database. After a successful malformed upload the runtime continues to operate until a restart; on restart the runtime can fail to start because of corrupted database entries, resulting in persistent denial of service requiring complete rebase of the product to recover. This vulnerability was remediated by commit 095ee09. |
| The attacker can use the raft server protocol in an unauthenticated way. The attacker can see the server's resources, including directories and files.
This issue affects Apache Zeppelin: from 0.10.1 up to 0.12.0.
Users are recommended to upgrade to version 0.12.0, which fixes the issue by removing the Cluster Interpreter. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: fix fault at system suspend if device was already runtime suspended
If the device was already runtime suspended then during system suspend
we cannot access the device registers else it will crash.
Also we cannot access any registers after dwc3_core_exit() on some
platforms so move the dwc3_enable_susphy() call to the top. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: wd33c93: Don't use stale scsi_pointer value
A regression was introduced with commit dbb2da557a6a ("scsi: wd33c93:
Move the SCSI pointer to private command data") which results in an oops
in wd33c93_intr(). That commit added the scsi_pointer variable and
initialized it from hostdata->connected. However, during selection,
hostdata->connected is not yet valid. Fix this by getting the current
scsi_pointer from hostdata->selecting. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: use two-phase skb reclamation in ieee80211_do_stop()
Since '__dev_queue_xmit()' should be called with interrupts enabled,
the following backtrace:
ieee80211_do_stop()
...
spin_lock_irqsave(&local->queue_stop_reason_lock, flags)
...
ieee80211_free_txskb()
ieee80211_report_used_skb()
ieee80211_report_ack_skb()
cfg80211_mgmt_tx_status_ext()
nl80211_frame_tx_status()
genlmsg_multicast_netns()
genlmsg_multicast_netns_filtered()
nlmsg_multicast_filtered()
netlink_broadcast_filtered()
do_one_broadcast()
netlink_broadcast_deliver()
__netlink_sendskb()
netlink_deliver_tap()
__netlink_deliver_tap_skb()
dev_queue_xmit()
__dev_queue_xmit() ; with IRQS disabled
...
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags)
issues the warning (as reported by syzbot reproducer):
WARNING: CPU: 2 PID: 5128 at kernel/softirq.c:362 __local_bh_enable_ip+0xc3/0x120
Fix this by implementing a two-phase skb reclamation in
'ieee80211_do_stop()', where actual work is performed
outside of a section with interrupts disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: pm: only decrement add_addr_accepted for MPJ req
Adding the following warning ...
WARN_ON_ONCE(msk->pm.add_addr_accepted == 0)
... before decrementing the add_addr_accepted counter helped to find a
bug when running the "remove single subflow" subtest from the
mptcp_join.sh selftest.
Removing a 'subflow' endpoint will first trigger a RM_ADDR, then the
subflow closure. Before this patch, and upon the reception of the
RM_ADDR, the other peer will then try to decrement this
add_addr_accepted. That's not correct because the attached subflows have
not been created upon the reception of an ADD_ADDR.
A way to solve that is to decrement the counter only if the attached
subflow was an MP_JOIN to a remote id that was not 0, and initiated by
the host receiving the RM_ADDR. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/uv: Don't call folio_wait_writeback() without a folio reference
folio_wait_writeback() requires that no spinlocks are held and that
a folio reference is held, as documented. After we dropped the PTL, the
folio could get freed concurrently. So grab a temporary reference. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/lima: fix shared irq handling on driver remove
lima uses a shared interrupt, so the interrupt handlers must be prepared
to be called at any time. At driver removal time, the clocks are
disabled early and the interrupts stay registered until the very end of
the remove process due to the devm usage.
This is potentially a bug as the interrupts access device registers
which assumes clocks are enabled. A crash can be triggered by removing
the driver in a kernel with CONFIG_DEBUG_SHIRQ enabled.
This patch frees the interrupts at each lima device finishing callback
so that the handlers are already unregistered by the time we fully
disable clocks. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Have process_string() also allow arrays
In order to catch a common bug where a TRACE_EVENT() TP_fast_assign()
assigns an address of an allocated string to the ring buffer and then
references it in TP_printk(), which can be executed hours later when the
string is free, the function test_event_printk() runs on all events as
they are registered to make sure there's no unwanted dereferencing.
It calls process_string() to handle cases in TP_printk() format that has
"%s". It returns whether or not the string is safe. But it can have some
false positives.
For instance, xe_bo_move() has:
TP_printk("move_lacks_source:%s, migrate object %p [size %zu] from %s to %s device_id:%s",
__entry->move_lacks_source ? "yes" : "no", __entry->bo, __entry->size,
xe_mem_type_to_name[__entry->old_placement],
xe_mem_type_to_name[__entry->new_placement], __get_str(device_id))
Where the "%s" references into xe_mem_type_to_name[]. This is an array of
pointers that should be safe for the event to access. Instead of flagging
this as a bad reference, if a reference points to an array, where the
record field is the index, consider it safe. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: avoid to add interface to list twice when SER
If SER L2 occurs during the WoWLAN resume flow, the add interface flow
is triggered by ieee80211_reconfig(). However, due to
rtw89_wow_resume() return failure, it will cause the add interface flow
to be executed again, resulting in a double add list and causing a kernel
panic. Therefore, we have added a check to prevent double adding of the
list.
list_add double add: new=ffff99d6992e2010, prev=ffff99d6992e2010, next=ffff99d695302628.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:37!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W O 6.6.30-02659-gc18865c4dfbd #1 770df2933251a0e3c888ba69d1053a817a6376a7
Hardware name: HP Grunt/Grunt, BIOS Google_Grunt.11031.169.0 06/24/2021
Workqueue: events_freezable ieee80211_restart_work [mac80211]
RIP: 0010:__list_add_valid_or_report+0x5e/0xb0
Code: c7 74 18 48 39 ce 74 13 b0 01 59 5a 5e 5f 41 58 41 59 41 5a 5d e9 e2 d6 03 00 cc 48 c7 c7 8d 4f 17 83 48 89 c2 e8 02 c0 00 00 <0f> 0b 48 c7 c7 aa 8c 1c 83 e8 f4 bf 00 00 0f 0b 48 c7 c7 c8 bc 12
RSP: 0018:ffffa91b8007bc50 EFLAGS: 00010246
RAX: 0000000000000058 RBX: ffff99d6992e0900 RCX: a014d76c70ef3900
RDX: ffffa91b8007bae8 RSI: 00000000ffffdfff RDI: 0000000000000001
RBP: ffffa91b8007bc88 R08: 0000000000000000 R09: ffffa91b8007bae0
R10: 00000000ffffdfff R11: ffffffff83a79800 R12: ffff99d695302060
R13: ffff99d695300900 R14: ffff99d6992e1be0 R15: ffff99d6992e2010
FS: 0000000000000000(0000) GS:ffff99d6aac00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000078fbdba43480 CR3: 000000010e464000 CR4: 00000000001506f0
Call Trace:
<TASK>
? __die_body+0x1f/0x70
? die+0x3d/0x60
? do_trap+0xa4/0x110
? __list_add_valid_or_report+0x5e/0xb0
? do_error_trap+0x6d/0x90
? __list_add_valid_or_report+0x5e/0xb0
? handle_invalid_op+0x30/0x40
? __list_add_valid_or_report+0x5e/0xb0
? exc_invalid_op+0x3c/0x50
? asm_exc_invalid_op+0x16/0x20
? __list_add_valid_or_report+0x5e/0xb0
rtw89_ops_add_interface+0x309/0x310 [rtw89_core 7c32b1ee6854761c0321027c8a58c5160e41f48f]
drv_add_interface+0x5c/0x130 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc]
ieee80211_reconfig+0x241/0x13d0 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc]
? finish_wait+0x3e/0x90
? synchronize_rcu_expedited+0x174/0x260
? sync_rcu_exp_done_unlocked+0x50/0x50
? wake_bit_function+0x40/0x40
ieee80211_restart_work+0xf0/0x140 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc]
process_scheduled_works+0x1e5/0x480
worker_thread+0xea/0x1e0
kthread+0xdb/0x110
? move_linked_works+0x90/0x90
? kthread_associate_blkcg+0xa0/0xa0
ret_from_fork+0x3b/0x50
? kthread_associate_blkcg+0xa0/0xa0
ret_from_fork_asm+0x11/0x20
</TASK>
Modules linked in: dm_integrity async_xor xor async_tx lz4 lz4_compress zstd zstd_compress zram zsmalloc rfcomm cmac uinput algif_hash algif_skcipher af_alg btusb btrtl iio_trig_hrtimer industrialio_sw_trigger btmtk industrialio_configfs btbcm btintel uvcvideo videobuf2_vmalloc iio_trig_sysfs videobuf2_memops videobuf2_v4l2 videobuf2_common uvc snd_hda_codec_hdmi veth snd_hda_intel snd_intel_dspcfg acpi_als snd_hda_codec industrialio_triggered_buffer kfifo_buf snd_hwdep industrialio i2c_piix4 snd_hda_core designware_i2s ip6table_nat snd_soc_max98357a xt_MASQUERADE xt_cgroup snd_soc_acp_rt5682_mach fuse rtw89_8922ae(O) rtw89_8922a(O) rtw89_pci(O) rtw89_core(O) 8021q mac80211(O) bluetooth ecdh_generic ecc cfg80211 r8152 mii joydev
gsmi: Log Shutdown Reason 0x03
---[ end trace 0000000000000000 ]--- |
| linux-pam (aka Linux PAM) before 1.6.0 allows attackers to cause a denial of service (blocked login process) via mkfifo because the openat call (for protect_dir) lacks O_DIRECTORY. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: Fix transport_* TOCTOU
Transport assignment may race with module unload. Protect new_transport
from becoming a stale pointer.
This also takes care of an insecure call in vsock_use_local_transport();
add a lockdep assert.
BUG: unable to handle page fault for address: fffffbfff8056000
Oops: Oops: 0000 [#1] SMP KASAN
RIP: 0010:vsock_assign_transport+0x366/0x600
Call Trace:
vsock_connect+0x59c/0xc40
__sys_connect+0xe8/0x100
__x64_sys_connect+0x6e/0xc0
do_syscall_64+0x92/0x1c0
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Force migrate away hrtimers queued after CPUHP_AP_HRTIMERS_DYING
hrtimers are migrated away from the dying CPU to any online target at
the CPUHP_AP_HRTIMERS_DYING stage in order not to delay bandwidth timers
handling tasks involved in the CPU hotplug forward progress.
However wakeups can still be performed by the outgoing CPU after
CPUHP_AP_HRTIMERS_DYING. Those can result again in bandwidth timers being
armed. Depending on several considerations (crystal ball power management
based election, earliest timer already enqueued, timer migration enabled or
not), the target may eventually be the current CPU even if offline. If that
happens, the timer is eventually ignored.
The most notable example is RCU which had to deal with each and every of
those wake-ups by deferring them to an online CPU, along with related
workarounds:
_ e787644caf76 (rcu: Defer RCU kthreads wakeup when CPU is dying)
_ 9139f93209d1 (rcu/nocb: Fix RT throttling hrtimer armed from offline CPU)
_ f7345ccc62a4 (rcu/nocb: Fix rcuog wake-up from offline softirq)
The problem isn't confined to RCU though as the stop machine kthread
(which runs CPUHP_AP_HRTIMERS_DYING) reports its completion at the end
of its work through cpu_stop_signal_done() and performs a wake up that
eventually arms the deadline server timer:
WARNING: CPU: 94 PID: 588 at kernel/time/hrtimer.c:1086 hrtimer_start_range_ns+0x289/0x2d0
CPU: 94 UID: 0 PID: 588 Comm: migration/94 Not tainted
Stopper: multi_cpu_stop+0x0/0x120 <- stop_machine_cpuslocked+0x66/0xc0
RIP: 0010:hrtimer_start_range_ns+0x289/0x2d0
Call Trace:
<TASK>
start_dl_timer
enqueue_dl_entity
dl_server_start
enqueue_task_fair
enqueue_task
ttwu_do_activate
try_to_wake_up
complete
cpu_stopper_thread
Instead of providing yet another bandaid to work around the situation, fix
it in the hrtimers infrastructure instead: always migrate away a timer to
an online target whenever it is enqueued from an offline CPU.
This will also allow to revert all the above RCU disgraceful hacks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: hugetlb: independent PMD page table shared count
The folio refcount may be increased unexpectly through try_get_folio() by
caller such as split_huge_pages. In huge_pmd_unshare(), we use refcount
to check whether a pmd page table is shared. The check is incorrect if
the refcount is increased by the above caller, and this can cause the page
table leaked:
BUG: Bad page state in process sh pfn:109324
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x66 pfn:0x109324
flags: 0x17ffff800000000(node=0|zone=2|lastcpupid=0xfffff)
page_type: f2(table)
raw: 017ffff800000000 0000000000000000 0000000000000000 0000000000000000
raw: 0000000000000066 0000000000000000 00000000f2000000 0000000000000000
page dumped because: nonzero mapcount
...
CPU: 31 UID: 0 PID: 7515 Comm: sh Kdump: loaded Tainted: G B 6.13.0-rc2master+ #7
Tainted: [B]=BAD_PAGE
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
Call trace:
show_stack+0x20/0x38 (C)
dump_stack_lvl+0x80/0xf8
dump_stack+0x18/0x28
bad_page+0x8c/0x130
free_page_is_bad_report+0xa4/0xb0
free_unref_page+0x3cc/0x620
__folio_put+0xf4/0x158
split_huge_pages_all+0x1e0/0x3e8
split_huge_pages_write+0x25c/0x2d8
full_proxy_write+0x64/0xd8
vfs_write+0xcc/0x280
ksys_write+0x70/0x110
__arm64_sys_write+0x24/0x38
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x34/0x128
el0t_64_sync_handler+0xc8/0xd0
el0t_64_sync+0x190/0x198
The issue may be triggered by damon, offline_page, page_idle, etc, which
will increase the refcount of page table.
1. The page table itself will be discarded after reporting the
"nonzero mapcount".
2. The HugeTLB page mapped by the page table miss freeing since we
treat the page table as shared and a shared page table will not be
unmapped.
Fix it by introducing independent PMD page table shared count. As
described by comment, pt_index/pt_mm/pt_frag_refcount are used for s390
gmap, x86 pgds and powerpc, pt_share_count is used for x86/arm64/riscv
pmds, so we can reuse the field as pt_share_count. |
| Unauthenticated remote arbitrary code execution
|
| In the Linux kernel, the following vulnerability has been resolved:
net: bcmgenet: Use stronger register read/writes to assure ordering
GCC12 appears to be much smarter about its dependency tracking and is
aware that the relaxed variants are just normal loads and stores and
this is causing problems like:
[ 210.074549] ------------[ cut here ]------------
[ 210.079223] NETDEV WATCHDOG: enabcm6e4ei0 (bcmgenet): transmit queue 1 timed out
[ 210.086717] WARNING: CPU: 1 PID: 0 at net/sched/sch_generic.c:529 dev_watchdog+0x234/0x240
[ 210.095044] Modules linked in: genet(E) nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat]
[ 210.146561] ACPI CPPC: PCC check channel failed for ss: 0. ret=-110
[ 210.146927] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 5.17.0-rc7G12+ #58
[ 210.153226] CPPC Cpufreq:cppc_scale_freq_workfn: failed to read perf counters
[ 210.161349] Hardware name: Raspberry Pi Foundation Raspberry Pi 4 Model B/Raspberry Pi 4 Model B, BIOS EDK2-DEV 02/08/2022
[ 210.161353] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 210.161358] pc : dev_watchdog+0x234/0x240
[ 210.161364] lr : dev_watchdog+0x234/0x240
[ 210.161368] sp : ffff8000080a3a40
[ 210.161370] x29: ffff8000080a3a40 x28: ffffcd425af87000 x27: ffff8000080a3b20
[ 210.205150] x26: ffffcd425aa00000 x25: 0000000000000001 x24: ffffcd425af8ec08
[ 210.212321] x23: 0000000000000100 x22: ffffcd425af87000 x21: ffff55b142688000
[ 210.219491] x20: 0000000000000001 x19: ffff55b1426884c8 x18: ffffffffffffffff
[ 210.226661] x17: 64656d6974203120 x16: 0000000000000001 x15: 6d736e617274203a
[ 210.233831] x14: 2974656e65676d63 x13: ffffcd4259c300d8 x12: ffffcd425b07d5f0
[ 210.241001] x11: 00000000ffffffff x10: ffffcd425b07d5f0 x9 : ffffcd4258bdad9c
[ 210.248171] x8 : 00000000ffffdfff x7 : 000000000000003f x6 : 0000000000000000
[ 210.255341] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000001000
[ 210.262511] x2 : 0000000000001000 x1 : 0000000000000005 x0 : 0000000000000044
[ 210.269682] Call trace:
[ 210.272133] dev_watchdog+0x234/0x240
[ 210.275811] call_timer_fn+0x3c/0x15c
[ 210.279489] __run_timers.part.0+0x288/0x310
[ 210.283777] run_timer_softirq+0x48/0x80
[ 210.287716] __do_softirq+0x128/0x360
[ 210.291392] __irq_exit_rcu+0x138/0x140
[ 210.295243] irq_exit_rcu+0x1c/0x30
[ 210.298745] el1_interrupt+0x38/0x54
[ 210.302334] el1h_64_irq_handler+0x18/0x24
[ 210.306445] el1h_64_irq+0x7c/0x80
[ 210.309857] arch_cpu_idle+0x18/0x2c
[ 210.313445] default_idle_call+0x4c/0x140
[ 210.317470] cpuidle_idle_call+0x14c/0x1a0
[ 210.321584] do_idle+0xb0/0x100
[ 210.324737] cpu_startup_entry+0x30/0x8c
[ 210.328675] secondary_start_kernel+0xe4/0x110
[ 210.333138] __secondary_switched+0x94/0x98
The assumption when these were relaxed seems to be that device memory
would be mapped non reordering, and that other constructs
(spinlocks/etc) would provide the barriers to assure that packet data
and in memory rings/queues were ordered with respect to device
register reads/writes. This itself seems a bit sketchy, but the real
problem with GCC12 is that it is moving the actual reads/writes around
at will as though they were independent operations when in truth they
are not, but the compiler can't know that. When looking at the
assembly dumps for many of these routines its possible to see very
clean, but not strictly in program order operations occurring as the
compiler would be free to do if these weren't actually register
reads/write operations.
Its possible to suppress the timeout with a liberal bit of dma_mb()'s
sprinkled around but the device still seems unable to reliably
send/receive data. A better plan is to use the safer readl/writel
everywhere.
Since this partially reverts an older commit, which notes the use of
the relaxed variants for performance reasons. I would suggest that
any performance problems
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: don't skip expired elements during walk
There is an asymmetry between commit/abort and preparation phase if the
following conditions are met:
1. set is a verdict map ("1.2.3.4 : jump foo")
2. timeouts are enabled
In this case, following sequence is problematic:
1. element E in set S refers to chain C
2. userspace requests removal of set S
3. kernel does a set walk to decrement chain->use count for all elements
from preparation phase
4. kernel does another set walk to remove elements from the commit phase
(or another walk to do a chain->use increment for all elements from
abort phase)
If E has already expired in 1), it will be ignored during list walk, so its use count
won't have been changed.
Then, when set is culled, ->destroy callback will zap the element via
nf_tables_set_elem_destroy(), but this function is only safe for
elements that have been deactivated earlier from the preparation phase:
lack of earlier deactivate removes the element but leaks the chain use
count, which results in a WARN splat when the chain gets removed later,
plus a leak of the nft_chain structure.
Update pipapo_get() not to skip expired elements, otherwise flush
command reports bogus ENOENT errors. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/surface: aggregator: Add missing call to ssam_request_sync_free()
Although rare, ssam_request_sync_init() can fail. In that case, the
request should be freed via ssam_request_sync_free(). Currently it is
leaked instead. Fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Set the max subreq size for cache writes to MAX_RW_COUNT
Set the maximum size of a subrequest that writes to cachefiles to be
MAX_RW_COUNT so that we don't overrun the maximum write we can make to the
backing filesystem. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Mark hrtimer to expire in hard interrupt context
Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard
interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the
timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels
unmarked hrtimers are moved into soft interrupt expiry mode by default.
Then the timers are canceled from an preempt-notifier which is invoked
with disabled preemption which is not allowed on PREEMPT_RT.
The timer callback is short so in could be invoked in hard-IRQ context.
So let the timer expire on hard-IRQ context even on -RT.
This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels:
BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002
Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns
CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774
Tainted: [W]=WARN
Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022
Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000
90000001167475a0 0000000000000000 90000001167475a8 9000000005644830
90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001
0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140
00000000000003fe 0000000000000001 000000000000000d 0000000000000003
0000000000000030 00000000000003f3 000000000790c000 9000000116747830
90000000057ef000 0000000000000000 9000000005644830 0000000000000004
0000000000000000 90000000057f4b58 0000000000000001 9000000116747868
900000000451b600 9000000005644830 9000000003a13998 0000000010000020
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d
...
Call Trace:
[<9000000003a13998>] show_stack+0x38/0x180
[<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0
[<9000000003a71708>] __schedule_bug+0x48/0x60
[<9000000004e45734>] __schedule+0x1114/0x1660
[<9000000004e46040>] schedule_rtlock+0x20/0x60
[<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0
[<9000000004e4f038>] rt_spin_lock+0x58/0x80
[<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0
[<9000000003b02e30>] hrtimer_cancel+0x70/0x80
[<ffff80000235eb70>] kvm_restore_timer+0x50/0x1a0 [kvm]
[<ffff8000023616c8>] kvm_arch_vcpu_load+0x68/0x2a0 [kvm]
[<ffff80000234c2d4>] kvm_sched_in+0x34/0x60 [kvm]
[<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0
[<9000000004e44a70>] __schedule+0x450/0x1660
[<9000000004e45cb0>] schedule+0x30/0x180
[<ffff800002354c70>] kvm_vcpu_block+0x70/0x120 [kvm]
[<ffff800002354d80>] kvm_vcpu_halt+0x60/0x3e0 [kvm]
[<ffff80000235b194>] kvm_handle_gspr+0x3f4/0x4e0 [kvm]
[<ffff80000235f548>] kvm_handle_exit+0x1c8/0x260 [kvm] |