| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A security issue was discovered in the LRA Coordinator component of Narayana. When Cancel is called in LRA, an execution time of approximately 2 seconds occurs. If Join is called with the same LRA ID within that timeframe, the application may crash or hang indefinitely, leading to a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vlan: don't propagate flags on open
With the device instance lock, there is now a possibility of a deadlock:
[ 1.211455] ============================================
[ 1.211571] WARNING: possible recursive locking detected
[ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted
[ 1.211823] --------------------------------------------
[ 1.211936] ip/184 is trying to acquire lock:
[ 1.212032] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0
[ 1.212207]
[ 1.212207] but task is already holding lock:
[ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.212487]
[ 1.212487] other info that might help us debug this:
[ 1.212626] Possible unsafe locking scenario:
[ 1.212626]
[ 1.212751] CPU0
[ 1.212815] ----
[ 1.212871] lock(&dev->lock);
[ 1.212944] lock(&dev->lock);
[ 1.213016]
[ 1.213016] *** DEADLOCK ***
[ 1.213016]
[ 1.213143] May be due to missing lock nesting notation
[ 1.213143]
[ 1.213294] 3 locks held by ip/184:
[ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0
[ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0
[ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.213895]
[ 1.213895] stack backtrace:
[ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5
[ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 1.213994] Call Trace:
[ 1.213995] <TASK>
[ 1.213996] dump_stack_lvl+0x8e/0xd0
[ 1.214000] print_deadlock_bug+0x28b/0x2a0
[ 1.214020] lock_acquire+0xea/0x2a0
[ 1.214027] __mutex_lock+0xbf/0xd40
[ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI
[ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev
[ 1.214042] __dev_open+0x145/0x270
[ 1.214046] __dev_change_flags+0xb0/0x1e0
[ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev
[ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info
[ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0
[ 1.214058] notifier_call_chain+0x78/0x120
[ 1.214062] netif_open+0x6d/0x90
[ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0
[ 1.214066] bond_enslave+0x64c/0x1230
[ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0
[ 1.214077] do_setlink+0x516/0x13b0
[ 1.214094] rtnl_newlink+0xaba/0xb80
[ 1.214132] rtnetlink_rcv_msg+0x440/0x490
[ 1.214144] netlink_rcv_skb+0xeb/0x120
[ 1.214150] netlink_unicast+0x1f9/0x320
[ 1.214153] netlink_sendmsg+0x346/0x3f0
[ 1.214157] __sock_sendmsg+0x86/0xb0
[ 1.214160] ____sys_sendmsg+0x1c8/0x220
[ 1.214164] ___sys_sendmsg+0x28f/0x2d0
[ 1.214179] __x64_sys_sendmsg+0xef/0x140
[ 1.214184] do_syscall_64+0xec/0x1d0
[ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 1.214191] RIP: 0033:0x7f2d1b4a7e56
Device setup:
netdevsim0 (down)
^ ^
bond netdevsim1.100@netdevsim1 allmulticast=on (down)
When we enslave the lower device (netdevsim0) which has a vlan, we
propagate vlan's allmuti/promisc flags during ndo_open. This causes
(re)locking on of the real_dev.
Propagate allmulti/promisc on flags change, not on the open. There
is a slight semantics change that vlans that are down now propagate
the flags, but this seems unlikely to result in the real issues.
Reproducer:
echo 0 1 > /sys/bus/netdevsim/new_device
dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*)
dev=$(echo $dev_path | rev | cut -d/ -f1 | rev)
ip link set dev $dev name netdevsim0
ip link set dev netdevsim0 up
ip link add link netdevsim0 name netdevsim0.100 type vlan id 100
ip link set dev netdevsim0.100 allm
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
PM: hibernate: Avoid deadlock in hibernate_compressor_param_set()
syzbot reported a deadlock in lock_system_sleep() (see below).
The write operation to "/sys/module/hibernate/parameters/compressor"
conflicts with the registration of ieee80211 device, resulting in a deadlock
when attempting to acquire system_transition_mutex under param_lock.
To avoid this deadlock, change hibernate_compressor_param_set() to use
mutex_trylock() for attempting to acquire system_transition_mutex and
return -EBUSY when it fails.
Task flags need not be saved or adjusted before calling
mutex_trylock(&system_transition_mutex) because the caller is not going
to end up waiting for this mutex and if it runs concurrently with system
suspend in progress, it will be frozen properly when it returns to user
space.
syzbot report:
syz-executor895/5833 is trying to acquire lock:
ffffffff8e0828c8 (system_transition_mutex){+.+.}-{4:4}, at: lock_system_sleep+0x87/0xa0 kernel/power/main.c:56
but task is already holding lock:
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: kernel_param_lock kernel/params.c:607 [inline]
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: param_attr_store+0xe6/0x300 kernel/params.c:586
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (param_lock){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
ieee80211_rate_control_ops_get net/mac80211/rate.c:220 [inline]
rate_control_alloc net/mac80211/rate.c:266 [inline]
ieee80211_init_rate_ctrl_alg+0x18d/0x6b0 net/mac80211/rate.c:1015
ieee80211_register_hw+0x20cd/0x4060 net/mac80211/main.c:1531
mac80211_hwsim_new_radio+0x304e/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5558
init_mac80211_hwsim+0x432/0x8c0 drivers/net/wireless/virtual/mac80211_hwsim.c:6910
do_one_initcall+0x128/0x700 init/main.c:1257
do_initcall_level init/main.c:1319 [inline]
do_initcalls init/main.c:1335 [inline]
do_basic_setup init/main.c:1354 [inline]
kernel_init_freeable+0x5c7/0x900 init/main.c:1568
kernel_init+0x1c/0x2b0 init/main.c:1457
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
-> #2 (rtnl_mutex){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
wg_pm_notification drivers/net/wireguard/device.c:80 [inline]
wg_pm_notification+0x49/0x180 drivers/net/wireguard/device.c:64
notifier_call_chain+0xb7/0x410 kernel/notifier.c:85
notifier_call_chain_robust kernel/notifier.c:120 [inline]
blocking_notifier_call_chain_robust kernel/notifier.c:345 [inline]
blocking_notifier_call_chain_robust+0xc9/0x170 kernel/notifier.c:333
pm_notifier_call_chain_robust+0x27/0x60 kernel/power/main.c:102
snapshot_open+0x189/0x2b0 kernel/power/user.c:77
misc_open+0x35a/0x420 drivers/char/misc.c:179
chrdev_open+0x237/0x6a0 fs/char_dev.c:414
do_dentry_open+0x735/0x1c40 fs/open.c:956
vfs_open+0x82/0x3f0 fs/open.c:1086
do_open fs/namei.c:3830 [inline]
path_openat+0x1e88/0x2d80 fs/namei.c:3989
do_filp_open+0x20c/0x470 fs/namei.c:4016
do_sys_openat2+0x17a/0x1e0 fs/open.c:1428
do_sys_open fs/open.c:1443 [inline]
__do_sys_openat fs/open.c:1459 [inline]
__se_sys_openat fs/open.c:1454 [inline]
__x64_sys_openat+0x175/0x210 fs/open.c:1454
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #1 ((pm_chain_head).rwsem){++++}-{4:4}:
down_read+0x9a/0x330 kernel/locking/rwsem.c:1524
blocking_notifier_call_chain_robust kerne
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: defer partition scanning
We need to suppress the partition scan from occuring within the
controller's scan_work context. If a path error occurs here, the IO will
wait until a path becomes available or all paths are torn down, but that
action also occurs within scan_work, so it would deadlock. Defer the
partion scan to a different context that does not block scan_work. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: don't set SB_RDONLY after filesystem errors
When the filesystem is mounted with errors=remount-ro, we were setting
SB_RDONLY flag to stop all filesystem modifications. We knew this misses
proper locking (sb->s_umount) and does not go through proper filesystem
remount procedure but it has been the way this worked since early ext2
days and it was good enough for catastrophic situation damage
mitigation. Recently, syzbot has found a way (see link) to trigger
warnings in filesystem freezing because the code got confused by
SB_RDONLY changing under its hands. Since these days we set
EXT4_FLAGS_SHUTDOWN on the superblock which is enough to stop all
filesystem modifications, modifying SB_RDONLY shouldn't be needed. So
stop doing that. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix WARNING:at_kernel/workqueue.c:#check_flush_dependency
In the commit aee2424246f9 ("RDMA/iwcm: Fix a use-after-free related to
destroying CM IDs"), the function flush_workqueue is invoked to flush the
work queue iwcm_wq.
But at that time, the work queue iwcm_wq was created via the function
alloc_ordered_workqueue without the flag WQ_MEM_RECLAIM.
Because the current process is trying to flush the whole iwcm_wq, if
iwcm_wq doesn't have the flag WQ_MEM_RECLAIM, verify that the current
process is not reclaiming memory or running on a workqueue which doesn't
have the flag WQ_MEM_RECLAIM as that can break forward-progress guarantee
leading to a deadlock.
The call trace is as below:
[ 125.350876][ T1430] Call Trace:
[ 125.356281][ T1430] <TASK>
[ 125.361285][ T1430] ? __warn (kernel/panic.c:693)
[ 125.367640][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.375689][ T1430] ? report_bug (lib/bug.c:180 lib/bug.c:219)
[ 125.382505][ T1430] ? handle_bug (arch/x86/kernel/traps.c:239)
[ 125.388987][ T1430] ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1))
[ 125.395831][ T1430] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:621)
[ 125.403125][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.410984][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.418764][ T1430] __flush_workqueue (kernel/workqueue.c:3970)
[ 125.426021][ T1430] ? __pfx___might_resched (kernel/sched/core.c:10151)
[ 125.433431][ T1430] ? destroy_cm_id (drivers/infiniband/core/iwcm.c:375) iw_cm
[ 125.441209][ T1430] ? __pfx___flush_workqueue (kernel/workqueue.c:3910)
[ 125.473900][ T1430] ? _raw_spin_lock_irqsave (arch/x86/include/asm/atomic.h:107 include/linux/atomic/atomic-arch-fallback.h:2170 include/linux/atomic/atomic-instrumented.h:1302 include/asm-generic/qspinlock.h:111 include/linux/spinlock.h:187 include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162)
[ 125.473909][ T1430] ? __pfx__raw_spin_lock_irqsave (kernel/locking/spinlock.c:161)
[ 125.482537][ T1430] _destroy_id (drivers/infiniband/core/cma.c:2044) rdma_cm
[ 125.495072][ T1430] nvme_rdma_free_queue (drivers/nvme/host/rdma.c:656 drivers/nvme/host/rdma.c:650) nvme_rdma
[ 125.505827][ T1430] nvme_rdma_reset_ctrl_work (drivers/nvme/host/rdma.c:2180) nvme_rdma
[ 125.505831][ T1430] process_one_work (kernel/workqueue.c:3231)
[ 125.515122][ T1430] worker_thread (kernel/workqueue.c:3306 kernel/workqueue.c:3393)
[ 125.515127][ T1430] ? __pfx_worker_thread (kernel/workqueue.c:3339)
[ 125.531837][ T1430] kthread (kernel/kthread.c:389)
[ 125.539864][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.550628][ T1430] ret_from_fork (arch/x86/kernel/process.c:147)
[ 125.558840][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.558844][ T1430] ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
[ 125.566487][ T1430] </TASK>
[ 125.566488][ T1430] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcp251x: fix deadlock if an interrupt occurs during mcp251x_open
The mcp251x_hw_wake() function is called with the mpc_lock mutex held and
disables the interrupt handler so that no interrupts can be processed while
waking the device. If an interrupt has already occurred then waiting for
the interrupt handler to complete will deadlock because it will be trying
to acquire the same mutex.
CPU0 CPU1
---- ----
mcp251x_open()
mutex_lock(&priv->mcp_lock)
request_threaded_irq()
<interrupt>
mcp251x_can_ist()
mutex_lock(&priv->mcp_lock)
mcp251x_hw_wake()
disable_irq() <-- deadlock
Use disable_irq_nosync() instead because the interrupt handler does
everything while holding the mutex so it doesn't matter if it's still
running. |
| In the Linux kernel, the following vulnerability has been resolved:
vfs: Don't evict inode under the inode lru traversing context
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature, ubifs with xattr) may do inode lookup in the inode
evicting callback function, if the inode lookup is operated under the
inode lru traversing context, deadlock problems may happen.
Case 1: In function ext4_evict_inode(), the ea inode lookup could happen
if ea_inode feature is enabled, the lookup process will be stuck
under the evicting context like this:
1. File A has inode i_reg and an ea inode i_ea
2. getfattr(A, xattr_buf) // i_ea is added into lru // lru->i_ea
3. Then, following three processes running like this:
PA PB
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// i_reg is added into lru, lru->i_ea->i_reg
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
i_ea->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(i_reg)
spin_unlock(&i_reg->i_lock)
spin_unlock(lru_lock)
rm file A
i_reg->nlink = 0
iput(i_reg) // i_reg->nlink is 0, do evict
ext4_evict_inode
ext4_xattr_delete_inode
ext4_xattr_inode_dec_ref_all
ext4_xattr_inode_iget
ext4_iget(i_ea->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(i_ea) ----→ AA deadlock
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&i_ea->i_state)
Case 2: In deleted inode writing function ubifs_jnl_write_inode(), file
deleting process holds BASEHD's wbuf->io_mutex while getting the
xattr inode, which could race with inode reclaiming process(The
reclaiming process could try locking BASEHD's wbuf->io_mutex in
inode evicting function), then an ABBA deadlock problem would
happen as following:
1. File A has inode ia and a xattr(with inode ixa), regular file B has
inode ib and a xattr.
2. getfattr(A, xattr_buf) // ixa is added into lru // lru->ixa
3. Then, following three processes running like this:
PA PB PC
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// ib and ia are added into lru, lru->ixa->ib->ia
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
ixa->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(ib)
spin_unlock(&ib->i_lock)
spin_unlock(lru_lock)
rm file B
ib->nlink = 0
rm file A
iput(ia)
ubifs_evict_inode(ia)
ubifs_jnl_delete_inode(ia)
ubifs_jnl_write_inode(ia)
make_reservation(BASEHD) // Lock wbuf->io_mutex
ubifs_iget(ixa->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(ixa)
| iput(ib) // ib->nlink is 0, do evict
| ubifs_evict_inode
| ubifs_jnl_delete_inode(ib)
↓ ubifs_jnl_write_inode
ABBA deadlock ←-----make_reservation(BASEHD)
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&ixa->i_state)
Fix the possible deadlock by using new inode state flag I_LRU_ISOLATING
to pin the inode in memory while inode_lru_isolate(
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix a deadlock problem when config TC during resetting
When config TC during the reset process, may cause a deadlock, the flow is
as below:
pf reset start
│
▼
......
setup tc │
│ ▼
▼ DOWN: napi_disable()
napi_disable()(skip) │
│ │
▼ ▼
...... ......
│ │
▼ │
napi_enable() │
▼
UINIT: netif_napi_del()
│
▼
......
│
▼
INIT: netif_napi_add()
│
▼
...... global reset start
│ │
▼ ▼
UP: napi_enable()(skip) ......
│ │
▼ ▼
...... napi_disable()
In reset process, the driver will DOWN the port and then UINIT, in this
case, the setup tc process will UP the port before UINIT, so cause the
problem. Adds a DOWN process in UINIT to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix a deadlock in dma buf fence polling
Introduce a version of the fence ops that on release doesn't remove
the fence from the pending list, and thus doesn't require a lock to
fix poll->fence wait->fence unref deadlocks.
vmwgfx overwrites the wait callback to iterate over the list of all
fences and update their status, to do that it holds a lock to prevent
the list modifcations from other threads. The fence destroy callback
both deletes the fence and removes it from the list of pending
fences, for which it holds a lock.
dma buf polling cb unrefs a fence after it's been signaled: so the poll
calls the wait, which signals the fences, which are being destroyed.
The destruction tries to acquire the lock on the pending fences list
which it can never get because it's held by the wait from which it
was called.
Old bug, but not a lot of userspace apps were using dma-buf polling
interfaces. Fix those, in particular this fixes KDE stalls/deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix deadlock between mddev_suspend and flush bio
Deadlock occurs when mddev is being suspended while some flush bio is in
progress. It is a complex issue.
T1. the first flush is at the ending stage, it clears 'mddev->flush_bio'
and tries to submit data, but is blocked because mddev is suspended
by T4.
T2. the second flush sets 'mddev->flush_bio', and attempts to queue
md_submit_flush_data(), which is already running (T1) and won't
execute again if on the same CPU as T1.
T3. the third flush inc active_io and tries to flush, but is blocked because
'mddev->flush_bio' is not NULL (set by T2).
T4. mddev_suspend() is called and waits for active_io dec to 0 which is inc
by T3.
T1 T2 T3 T4
(flush 1) (flush 2) (third 3) (suspend)
md_submit_flush_data
mddev->flush_bio = NULL;
.
. md_flush_request
. mddev->flush_bio = bio
. queue submit_flushes
. .
. . md_handle_request
. . active_io + 1
. . md_flush_request
. . wait !mddev->flush_bio
. .
. . mddev_suspend
. . wait !active_io
. .
. submit_flushes
. queue_work md_submit_flush_data
. //md_submit_flush_data is already running (T1)
.
md_handle_request
wait resume
The root issue is non-atomic inc/dec of active_io during flush process.
active_io is dec before md_submit_flush_data is queued, and inc soon
after md_submit_flush_data() run.
md_flush_request
active_io + 1
submit_flushes
active_io - 1
md_submit_flush_data
md_handle_request
active_io + 1
make_request
active_io - 1
If active_io is dec after md_handle_request() instead of within
submit_flushes(), make_request() can be called directly intead of
md_handle_request() in md_submit_flush_data(), and active_io will
only inc and dec once in the whole flush process. Deadlock will be
fixed.
Additionally, the only difference between fixing the issue and before is
that there is no return error handling of make_request(). But after
previous patch cleaned md_write_start(), make_requst() only return error
in raid5_make_request() by dm-raid, see commit 41425f96d7aa ("dm-raid456,
md/raid456: fix a deadlock for dm-raid456 while io concurrent with
reshape)". Since dm always splits data and flush operation into two
separate io, io size of flush submitted by dm always is 0, make_request()
will not be called in md_submit_flush_data(). To prevent future
modifications from introducing issues, add WARN_ON to ensure
make_request() no error is returned in this context. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "ALSA: firewire-lib: operate for period elapse event in process context"
Commit 7ba5ca32fe6e ("ALSA: firewire-lib: operate for period elapse event
in process context") removed the process context workqueue from
amdtp_domain_stream_pcm_pointer() and update_pcm_pointers() to remove
its overhead.
With RME Fireface 800, this lead to a regression since
Kernels 5.14.0, causing an AB/BA deadlock competition for the
substream lock with eventual system freeze under ALSA operation:
thread 0:
* (lock A) acquire substream lock by
snd_pcm_stream_lock_irq() in
snd_pcm_status64()
* (lock B) wait for tasklet to finish by calling
tasklet_unlock_spin_wait() in
tasklet_disable_in_atomic() in
ohci_flush_iso_completions() of ohci.c
thread 1:
* (lock B) enter tasklet
* (lock A) attempt to acquire substream lock,
waiting for it to be released:
snd_pcm_stream_lock_irqsave() in
snd_pcm_period_elapsed() in
update_pcm_pointers() in
process_ctx_payloads() in
process_rx_packets() of amdtp-stream.c
? tasklet_unlock_spin_wait
</NMI>
<TASK>
ohci_flush_iso_completions firewire_ohci
amdtp_domain_stream_pcm_pointer snd_firewire_lib
snd_pcm_update_hw_ptr0 snd_pcm
snd_pcm_status64 snd_pcm
? native_queued_spin_lock_slowpath
</NMI>
<IRQ>
_raw_spin_lock_irqsave
snd_pcm_period_elapsed snd_pcm
process_rx_packets snd_firewire_lib
irq_target_callback snd_firewire_lib
handle_it_packet firewire_ohci
context_tasklet firewire_ohci
Restore the process context work queue to prevent deadlock
AB/BA deadlock competition for ALSA substream lock of
snd_pcm_stream_lock_irq() in snd_pcm_status64()
and snd_pcm_stream_lock_irqsave() in snd_pcm_period_elapsed().
revert commit 7ba5ca32fe6e ("ALSA: firewire-lib: operate for period
elapse event in process context")
Replace inline description to prevent future deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: fix deadlock in create_pinctrl() when handling -EPROBE_DEFER
In create_pinctrl(), pinctrl_maps_mutex is acquired before calling
add_setting(). If add_setting() returns -EPROBE_DEFER, create_pinctrl()
calls pinctrl_free(). However, pinctrl_free() attempts to acquire
pinctrl_maps_mutex, which is already held by create_pinctrl(), leading to
a potential deadlock.
This patch resolves the issue by releasing pinctrl_maps_mutex before
calling pinctrl_free(), preventing the deadlock.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: remove lock of otg mode during gadget suspend/resume to avoid deadlock
When config CONFIG_USB_DWC3_DUAL_ROLE is selected, and trigger system
to enter suspend status with below command:
echo mem > /sys/power/state
There will be a deadlock issue occurring. Detailed invoking path as
below:
dwc3_suspend_common()
spin_lock_irqsave(&dwc->lock, flags); <-- 1st
dwc3_gadget_suspend(dwc);
dwc3_gadget_soft_disconnect(dwc);
spin_lock_irqsave(&dwc->lock, flags); <-- 2nd
This issue is exposed by commit c7ebd8149ee5 ("usb: dwc3: gadget: Fix
NULL pointer dereference in dwc3_gadget_suspend") that removes the code
of checking whether dwc->gadget_driver is NULL or not. It causes the
following code is executed and deadlock occurs when trying to get the
spinlock. In fact, the root cause is the commit 5265397f9442("usb: dwc3:
Remove DWC3 locking during gadget suspend/resume") that forgot to remove
the lock of otg mode. So, remove the redundant lock of otg mode during
gadget suspend/resume. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix possible deadlock in io_register_iowq_max_workers()
The io_register_iowq_max_workers() function calls io_put_sq_data(),
which acquires the sqd->lock without releasing the uring_lock.
Similar to the commit 009ad9f0c6ee ("io_uring: drop ctx->uring_lock
before acquiring sqd->lock"), this can lead to a potential deadlock
situation.
To resolve this issue, the uring_lock is released before calling
io_put_sq_data(), and then it is re-acquired after the function call.
This change ensures that the locks are acquired in the correct
order, preventing the possibility of a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: cancel all works upon hci_unregister_dev()
syzbot is reporting that calling hci_release_dev() from hci_error_reset()
due to hci_dev_put() from hci_error_reset() can cause deadlock at
destroy_workqueue(), for hci_error_reset() is called from
hdev->req_workqueue which destroy_workqueue() needs to flush.
We need to make sure that hdev->{rx_work,cmd_work,tx_work} which are
queued into hdev->workqueue and hdev->{power_on,error_reset} which are
queued into hdev->req_workqueue are no longer running by the moment
destroy_workqueue(hdev->workqueue);
destroy_workqueue(hdev->req_workqueue);
are called from hci_release_dev().
Call cancel_work_sync() on these work items from hci_unregister_dev()
as soon as hdev->list is removed from hci_dev_list. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ks8851: Fix deadlock with the SPI chip variant
When SMP is enabled and spinlocks are actually functional then there is
a deadlock with the 'statelock' spinlock between ks8851_start_xmit_spi
and ks8851_irq:
watchdog: BUG: soft lockup - CPU#0 stuck for 27s!
call trace:
queued_spin_lock_slowpath+0x100/0x284
do_raw_spin_lock+0x34/0x44
ks8851_start_xmit_spi+0x30/0xb8
ks8851_start_xmit+0x14/0x20
netdev_start_xmit+0x40/0x6c
dev_hard_start_xmit+0x6c/0xbc
sch_direct_xmit+0xa4/0x22c
__qdisc_run+0x138/0x3fc
qdisc_run+0x24/0x3c
net_tx_action+0xf8/0x130
handle_softirqs+0x1ac/0x1f0
__do_softirq+0x14/0x20
____do_softirq+0x10/0x1c
call_on_irq_stack+0x3c/0x58
do_softirq_own_stack+0x1c/0x28
__irq_exit_rcu+0x54/0x9c
irq_exit_rcu+0x10/0x1c
el1_interrupt+0x38/0x50
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x64/0x68
__netif_schedule+0x6c/0x80
netif_tx_wake_queue+0x38/0x48
ks8851_irq+0xb8/0x2c8
irq_thread_fn+0x2c/0x74
irq_thread+0x10c/0x1b0
kthread+0xc8/0xd8
ret_from_fork+0x10/0x20
This issue has not been identified earlier because tests were done on
a device with SMP disabled and so spinlocks were actually NOPs.
Now use spin_(un)lock_bh for TX queue related locking to avoid execution
of softirq work synchronously that would lead to a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_api: fix possible infinite loop in tcf_idr_check_alloc()
syzbot found hanging tasks waiting on rtnl_lock [1]
A reproducer is available in the syzbot bug.
When a request to add multiple actions with the same index is sent, the
second request will block forever on the first request. This holds
rtnl_lock, and causes tasks to hang.
Return -EAGAIN to prevent infinite looping, while keeping documented
behavior.
[1]
INFO: task kworker/1:0:5088 blocked for more than 143 seconds.
Not tainted 6.9.0-rc4-syzkaller-00173-g3cdb45594619 #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/1:0 state:D stack:23744 pid:5088 tgid:5088 ppid:2 flags:0x00004000
Workqueue: events_power_efficient reg_check_chans_work
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5409 [inline]
__schedule+0xf15/0x5d00 kernel/sched/core.c:6746
__schedule_loop kernel/sched/core.c:6823 [inline]
schedule+0xe7/0x350 kernel/sched/core.c:6838
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:6895
__mutex_lock_common kernel/locking/mutex.c:684 [inline]
__mutex_lock+0x5b8/0x9c0 kernel/locking/mutex.c:752
wiphy_lock include/net/cfg80211.h:5953 [inline]
reg_leave_invalid_chans net/wireless/reg.c:2466 [inline]
reg_check_chans_work+0x10a/0x10e0 net/wireless/reg.c:2481 |
| In the Linux kernel, the following vulnerability has been resolved:
batman-adv: bypass empty buckets in batadv_purge_orig_ref()
Many syzbot reports are pointing to soft lockups in
batadv_purge_orig_ref() [1]
Root cause is unknown, but we can avoid spending too much
time there and perhaps get more interesting reports.
[1]
watchdog: BUG: soft lockup - CPU#0 stuck for 27s! [kworker/u4:6:621]
Modules linked in:
irq event stamp: 6182794
hardirqs last enabled at (6182793): [<ffff8000801dae10>] __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386
hardirqs last disabled at (6182794): [<ffff80008ad66a78>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline]
hardirqs last disabled at (6182794): [<ffff80008ad66a78>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551
softirqs last enabled at (6182792): [<ffff80008aab71c4>] spin_unlock_bh include/linux/spinlock.h:396 [inline]
softirqs last enabled at (6182792): [<ffff80008aab71c4>] batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287
softirqs last disabled at (6182790): [<ffff80008aab61dc>] spin_lock_bh include/linux/spinlock.h:356 [inline]
softirqs last disabled at (6182790): [<ffff80008aab61dc>] batadv_purge_orig_ref+0x164/0x1228 net/batman-adv/originator.c:1271
CPU: 0 PID: 621 Comm: kworker/u4:6 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
Workqueue: bat_events batadv_purge_orig
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : should_resched arch/arm64/include/asm/preempt.h:79 [inline]
pc : __local_bh_enable_ip+0x228/0x44c kernel/softirq.c:388
lr : __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386
sp : ffff800099007970
x29: ffff800099007980 x28: 1fffe00018fce1bd x27: dfff800000000000
x26: ffff0000d2620008 x25: ffff0000c7e70de8 x24: 0000000000000001
x23: 1fffe00018e57781 x22: dfff800000000000 x21: ffff80008aab71c4
x20: ffff0001b40136c0 x19: ffff0000c72bbc08 x18: 1fffe0001a817bb0
x17: ffff800125414000 x16: ffff80008032116c x15: 0000000000000001
x14: 1fffe0001ee9d610 x13: 0000000000000000 x12: 0000000000000003
x11: 0000000000000000 x10: 0000000000ff0100 x9 : 0000000000000000
x8 : 00000000005e5789 x7 : ffff80008aab61dc x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000000006 x1 : 0000000000000080 x0 : ffff800125414000
Call trace:
__daif_local_irq_enable arch/arm64/include/asm/irqflags.h:27 [inline]
arch_local_irq_enable arch/arm64/include/asm/irqflags.h:49 [inline]
__local_bh_enable_ip+0x228/0x44c kernel/softirq.c:386
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline]
_raw_spin_unlock_bh+0x3c/0x4c kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287
batadv_purge_orig+0x20/0x70 net/batman-adv/originator.c:1300
process_one_work+0x694/0x1204 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x938/0xef4 kernel/workqueue.c:2787
kthread+0x288/0x310 kernel/kthread.c:388
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
Sending NMI from CPU 0 to CPUs 1:
NMI backtrace for cpu 1
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : arch_local_irq_enable+0x8/0xc arch/arm64/include/asm/irqflags.h:51
lr : default_idle_call+0xf8/0x128 kernel/sched/idle.c:103
sp : ffff800093a17d30
x29: ffff800093a17d30 x28: dfff800000000000 x27: 1ffff00012742fb4
x26: ffff80008ec9d000 x25: 0000000000000000 x24: 0000000000000002
x23: 1ffff00011d93a74 x22: ffff80008ec9d3a0 x21: 0000000000000000
x20: ffff0000c19dbc00 x19: ffff8000802d0fd8 x18: 1fffe00036804396
x17: ffff80008ec9d000 x16: ffff8000802d089c x15: 0000000000000001
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix potential hung tasks during chip recovery
During chip recovery (e.g. chip reset), there is a possible situation that
kernel worker reset_work is holding the lock and waiting for kernel thread
stat_worker to be parked, while stat_worker is waiting for the release of
the same lock.
It causes a deadlock resulting in the dumping of hung tasks messages and
possible rebooting of the device.
This patch prevents the execution of stat_worker during the chip recovery. |