| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A maliciously crafted STP file, when parsed in stp_aim_x64_vc15d.dll through Autodesk applications, can be used to uninitialized variables. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
| A maliciously crafted MODEL file, when parsed in ASMkern229A.dllthrough Autodesk applications, can be used to uninitialized variables. This vulnerability, along with other vulnerabilities, could lead to code execution in the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: start MHI channel after endpoit creation
MHI channel may generates event/interrupt right after enabling.
It may leads to 2 race conditions issues.
1)
Such event may be dropped by qcom_mhi_qrtr_dl_callback() at check:
if (!qdev || mhi_res->transaction_status)
return;
Because dev_set_drvdata(&mhi_dev->dev, qdev) may be not performed at
this moment. In this situation qrtr-ns will be unable to enumerate
services in device.
---------------------------------------------------------------
2)
Such event may come at the moment after dev_set_drvdata() and
before qrtr_endpoint_register(). In this case kernel will panic with
accessing wrong pointer at qcom_mhi_qrtr_dl_callback():
rc = qrtr_endpoint_post(&qdev->ep, mhi_res->buf_addr,
mhi_res->bytes_xferd);
Because endpoint is not created yet.
--------------------------------------------------------------
So move mhi_prepare_for_transfer_autoqueue after endpoint creation
to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: mv88e6xxx: fix -ENOENT when deleting VLANs and MST is unsupported
Russell King reports that on the ZII dev rev B, deleting a bridge VLAN
from a user port fails with -ENOENT:
https://lore.kernel.org/netdev/Z_lQXNP0s5-IiJzd@shell.armlinux.org.uk/
This comes from mv88e6xxx_port_vlan_leave() -> mv88e6xxx_mst_put(),
which tries to find an MST entry in &chip->msts associated with the SID,
but fails and returns -ENOENT as such.
But we know that this chip does not support MST at all, so that is not
surprising. The question is why does the guard in mv88e6xxx_mst_put()
not exit early:
if (!sid)
return 0;
And the answer seems to be simple: the sid comes from vlan.sid which
supposedly was previously populated by mv88e6xxx_vtu_get().
But some chip->info->ops->vtu_getnext() implementations do not populate
vlan.sid, for example see mv88e6185_g1_vtu_getnext(). In that case,
later in mv88e6xxx_port_vlan_leave() we are using a garbage sid which is
just residual stack memory.
Testing for sid == 0 covers all cases of a non-bridge VLAN or a bridge
VLAN mapped to the default MSTI. For some chips, SID 0 is valid and
installed by mv88e6xxx_stu_setup(). A chip which does not support the
STU would implicitly only support mapping all VLANs to the default MSTI,
so although SID 0 is not valid, it would be sufficient, if we were to
zero-initialize the vlan structure, to fix the bug, due to the
coincidence that a test for vlan.sid == 0 already exists and leads to
the same (correct) behavior.
Another option which would be sufficient would be to add a test for
mv88e6xxx_has_stu() inside mv88e6xxx_mst_put(), symmetric to the one
which already exists in mv88e6xxx_mst_get(). But that placement means
the caller will have to dereference vlan.sid, which means it will access
uninitialized memory, which is not nice even if it ignores it later.
So we end up making both modifications, in order to not rely just on the
sid == 0 coincidence, but also to avoid having uninitialized structure
fields which might get temporarily accessed. |
| In the Linux kernel, the following vulnerability has been resolved:
pds_core: handle unsupported PDS_CORE_CMD_FW_CONTROL result
If the FW doesn't support the PDS_CORE_CMD_FW_CONTROL command
the driver might at the least print garbage and at the worst
crash when the user runs the "devlink dev info" devlink command.
This happens because the stack variable fw_list is not 0
initialized which results in fw_list.num_fw_slots being a
garbage value from the stack. Then the driver tries to access
fw_list.fw_names[i] with i >= ARRAY_SIZE and runs off the end
of the array.
Fix this by initializing the fw_list and by not failing
completely if the devcmd fails because other useful information
is printed via devlink dev info even if the devcmd fails. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: initialize struct pn533_out_arg properly
struct pn533_out_arg used as a temporary context for out_urb is not
initialized properly. Its uninitialized 'phy' field can be dereferenced in
error cases inside pn533_out_complete() callback function. It causes the
following failure:
general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.2.0-rc3-next-20230110-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
RIP: 0010:pn533_out_complete.cold+0x15/0x44 drivers/nfc/pn533/usb.c:441
Call Trace:
<IRQ>
__usb_hcd_giveback_urb+0x2b6/0x5c0 drivers/usb/core/hcd.c:1671
usb_hcd_giveback_urb+0x384/0x430 drivers/usb/core/hcd.c:1754
dummy_timer+0x1203/0x32d0 drivers/usb/gadget/udc/dummy_hcd.c:1988
call_timer_fn+0x1da/0x800 kernel/time/timer.c:1700
expire_timers+0x234/0x330 kernel/time/timer.c:1751
__run_timers kernel/time/timer.c:2022 [inline]
__run_timers kernel/time/timer.c:1995 [inline]
run_timer_softirq+0x326/0x910 kernel/time/timer.c:2035
__do_softirq+0x1fb/0xaf6 kernel/softirq.c:571
invoke_softirq kernel/softirq.c:445 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:650
irq_exit_rcu+0x9/0x20 kernel/softirq.c:662
sysvec_apic_timer_interrupt+0x97/0xc0 arch/x86/kernel/apic/apic.c:1107
Initialize the field with the pn533_usb_phy currently used.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| Use of uninitialized resource in Windows Routing and Remote Access Service (RRAS) allows an authorized attacker to disclose information over a network. |
| Use of uninitialized resource in Windows Routing and Remote Access Service (RRAS) allows an authorized attacker to disclose information over a network. |
| Use of uninitialized resource in Windows Routing and Remote Access Service (RRAS) allows an authorized attacker to disclose information over a network. |
| Use of uninitialized resource in Windows Routing and Remote Access Service (RRAS) allows an authorized attacker to disclose information over a network. |
| Use of uninitialized resource in Windows Routing and Remote Access Service (RRAS) allows an authorized attacker to disclose information over a network. |
| Untrusted pointer dereference in Microsoft Graphics Component allows an unauthorized attacker to execute code over a network. |
| Use of uninitialized resource in Windows Routing and Remote Access Service (RRAS) allows an authorized attacker to disclose information over a network. |
| Use of uninitialized resource in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| A flaw was found in Samba, in the vfs_streams_xattr module, where uninitialized heap memory could be written into alternate data streams. This allows an authenticated user to read residual memory content that may include sensitive data, resulting in an information disclosure vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
misc/vmw_vmci: fix an infoleak in vmci_host_do_receive_datagram()
`struct vmci_event_qp` allocated by qp_notify_peer() contains padding,
which may carry uninitialized data to the userspace, as observed by
KMSAN:
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user ./include/linux/instrumented.h:121
instrument_copy_to_user ./include/linux/instrumented.h:121
_copy_to_user+0x5f/0xb0 lib/usercopy.c:33
copy_to_user ./include/linux/uaccess.h:169
vmci_host_do_receive_datagram drivers/misc/vmw_vmci/vmci_host.c:431
vmci_host_unlocked_ioctl+0x33d/0x43d0 drivers/misc/vmw_vmci/vmci_host.c:925
vfs_ioctl fs/ioctl.c:51
...
Uninit was stored to memory at:
kmemdup+0x74/0xb0 mm/util.c:131
dg_dispatch_as_host drivers/misc/vmw_vmci/vmci_datagram.c:271
vmci_datagram_dispatch+0x4f8/0xfc0 drivers/misc/vmw_vmci/vmci_datagram.c:339
qp_notify_peer+0x19a/0x290 drivers/misc/vmw_vmci/vmci_queue_pair.c:1479
qp_broker_attach drivers/misc/vmw_vmci/vmci_queue_pair.c:1662
qp_broker_alloc+0x2977/0x2f30 drivers/misc/vmw_vmci/vmci_queue_pair.c:1750
vmci_qp_broker_alloc+0x96/0xd0 drivers/misc/vmw_vmci/vmci_queue_pair.c:1940
vmci_host_do_alloc_queuepair drivers/misc/vmw_vmci/vmci_host.c:488
vmci_host_unlocked_ioctl+0x24fd/0x43d0 drivers/misc/vmw_vmci/vmci_host.c:927
...
Local variable ev created at:
qp_notify_peer+0x54/0x290 drivers/misc/vmw_vmci/vmci_queue_pair.c:1456
qp_broker_attach drivers/misc/vmw_vmci/vmci_queue_pair.c:1662
qp_broker_alloc+0x2977/0x2f30 drivers/misc/vmw_vmci/vmci_queue_pair.c:1750
Bytes 28-31 of 48 are uninitialized
Memory access of size 48 starts at ffff888035155e00
Data copied to user address 0000000020000100
Use memset() to prevent the infoleaks.
Also speculatively fix qp_notify_peer_local(), which may suffer from the
same problem. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ena: Fix error handling in ena_init()
The ena_init() won't destroy workqueue created by
create_singlethread_workqueue() when pci_register_driver() failed.
Call destroy_workqueue() when pci_register_driver() failed to prevent the
resource leak. |
| A vulnerability was found in OpenSC, OpenSC tools, PKCS#11 module, minidriver, and CTK. An attacker could use a crafted USB Device or Smart Card, which would present the system with a specially crafted response to APDUs.
Insufficient or missing checking of return values of functions leads to unexpected work with variables that have not been initialized. |
| A vulnerability was found in OpenSC, OpenSC tools, PKCS#11 module, minidriver, and CTK. An attacker could use a crafted USB Device or Smart Card, which would present the system with a specially crafted response to APDUs.
The following problems were caused by insufficient control of the response APDU buffer and its length when communicating with the card. |
| A vulnerability was found in pkcs15-init in OpenSC. An attacker could use a crafted USB Device or Smart Card, which would present the system with a specially crafted response to APDUs.
Insufficient or missing checking of return values of functions leads to unexpected work with variables that have not been initialized. |