| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| WaveView client allows users to execute restricted set of predefined commands and scripts on the connected WaveStore Server. A malicious attacker with high-privileges is able to read or delete files, with the permissions of dvr user, on the server using path traversal in the alog script.
This issue was fixed in version 6.44.44 |
| GLPI is a free asset and IT management software package. Starting in version 10.0.0 and prior to version 10.0.21, an unauthenticated user can store an XSS payload through the inventory endpoint. Users should upgrade to 10.0.21 to receive a patch. |
| A remote code execution issue exists in HPE OneView. |
| InvoicePlane commit debb446c is vulnerable to Incorrect Access Control. The invoices/view handler fails to verify ownership before returning invoice data. |
| WaveView client allows users to execute restricted set of predefined commands and scripts on the connected WaveStore Server. A malicious attacker with high-privileges is able to read or delete any file on the server using path traversal in the ilog script. This script is being run with root privileges.
This issue was fixed in version 6.44.44 |
| NVIDIA Isaac Lab contains a deserialization vulnerability. A successful exploit of this vulnerability might lead to code execution. |
| In JetBrains TeamCity before 2025.11 reflected XSS was possible on VCS Root setup |
| NVIDIA Resiliency Extension for Linux contains a vulnerability in log aggregation, where an attacker could cause predictable log-file names. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, denial of service, information disclosure, and data tampering. |
| NVIDIA NeMo Framework for all platforms contains a vulnerability where malicious data created by an attacker may cause a code injection. A successful exploit of this vulnerability may lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges. |
| NVIDIA NeMo Framework contains a vulnerability in model loading that could allow an attacker to exploit improper control mechanisms if a user loads a maliciously crafted file. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, denial of service, and data tampering. |
| In JetBrains TeamCity before 2025.11 maven embedder allowed loading extensions via project configuration |
| A Path Traversal vulnerability in the Allsky WebUI version v2024.12.06_06 allows an unauthenticated remote attacker to achieve arbitrary command execution. By sending a crafted HTTP request to the /html/execute.php endpoint with a malicious payload in the id parameter, an attacker can execute arbitrary commands on the underlying operating system, leading to full remote code execution (RCE). |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix uninit-value for saddr in do_output_route4
syzbot reports for uninit-value for the saddr argument [1].
commit 4754957f04f5 ("ipvs: do not use random local source address for
tunnels") already implies that the input value of saddr
should be ignored but the code is still reading it which can prevent
to connect the route. Fix it by changing the argument to ret_saddr.
[1]
BUG: KMSAN: uninit-value in do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147
do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147
__ip_vs_get_out_rt+0x403/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:330
ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136
ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
__ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118
ip_local_out net/ipv4/ip_output.c:127 [inline]
ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501
udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195
udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483
inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x267/0x380 net/socket.c:727
____sys_sendmsg+0x91b/0xda0 net/socket.c:2566
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620
__sys_sendmmsg+0x41d/0x880 net/socket.c:2702
__compat_sys_sendmmsg net/compat.c:360 [inline]
__do_compat_sys_sendmmsg net/compat.c:367 [inline]
__se_compat_sys_sendmmsg net/compat.c:364 [inline]
__ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364
ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306
do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4167 [inline]
slab_alloc_node mm/slub.c:4210 [inline]
__kmalloc_cache_noprof+0x8fa/0xe00 mm/slub.c:4367
kmalloc_noprof include/linux/slab.h:905 [inline]
ip_vs_dest_dst_alloc net/netfilter/ipvs/ip_vs_xmit.c:61 [inline]
__ip_vs_get_out_rt+0x35d/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:323
ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136
ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
__ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118
ip_local_out net/ipv4/ip_output.c:127 [inline]
ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501
udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195
udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483
inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x267/0x380 net/socket.c:727
____sys_sendmsg+0x91b/0xda0 net/socket.c:2566
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620
__sys_sendmmsg+0x41d/0x880 net/socket.c:2702
__compat_sys_sendmmsg net/compat.c:360 [inline]
__do_compat_sys_sendmmsg net/compat.c:367 [inline]
__se_compat_sys_sendmmsg net/compat.c:364 [inline]
__ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364
ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306
do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
CPU: 0 UID: 0 PID: 22408 Comm: syz.4.5165 Not tainted 6.15.0-rc3-syzkaller-00019-gbc3372351d0c #0 PREEMPT(undef)
Hardware name: Google Google Compute Engi
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Scrub packet on bpf_redirect_peer
When bpf_redirect_peer is used to redirect packets to a device in
another network namespace, the skb isn't scrubbed. That can lead skb
information from one namespace to be "misused" in another namespace.
As one example, this is causing Cilium to drop traffic when using
bpf_redirect_peer to redirect packets that just went through IPsec
decryption to a container namespace. The following pwru trace shows (1)
the packet path from the host's XFRM layer to the container's XFRM
layer where it's dropped and (2) the number of active skb extensions at
each function.
NETNS MARK IFACE TUPLE FUNC
4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 xfrm_rcv_cb
.active_extensions = (__u8)2,
4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 xfrm4_rcv_cb
.active_extensions = (__u8)2,
4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 gro_cells_receive
.active_extensions = (__u8)2,
[...]
4026533547 0 eth0 10.244.3.124:35473->10.244.2.158:53 skb_do_redirect
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 ip_rcv
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 ip_rcv_core
.active_extensions = (__u8)2,
[...]
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 udp_queue_rcv_one_skb
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 __xfrm_policy_check
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 __xfrm_decode_session
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 security_xfrm_decode_session
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 kfree_skb_reason(SKB_DROP_REASON_XFRM_POLICY)
.active_extensions = (__u8)2,
In this case, there are no XFRM policies in the container's network
namespace so the drop is unexpected. When we decrypt the IPsec packet,
the XFRM state used for decryption is set in the skb extensions. This
information is preserved across the netns switch. When we reach the
XFRM policy check in the container's netns, __xfrm_policy_check drops
the packet with LINUX_MIB_XFRMINNOPOLS because a (container-side) XFRM
policy can't be found that matches the (host-side) XFRM state used for
decryption.
This patch fixes this by scrubbing the packet when using
bpf_redirect_peer, as is done on typical netns switches via veth
devices except skb->mark and skb->tstamp are not zeroed. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: fix dereferencing invalid pmd migration entry
When migrating a THP, concurrent access to the PMD migration entry during
a deferred split scan can lead to an invalid address access, as
illustrated below. To prevent this invalid access, it is necessary to
check the PMD migration entry and return early. In this context, there is
no need to use pmd_to_swp_entry and pfn_swap_entry_to_page to verify the
equality of the target folio. Since the PMD migration entry is locked, it
cannot be served as the target.
Mailing list discussion and explanation from Hugh Dickins: "An anon_vma
lookup points to a location which may contain the folio of interest, but
might instead contain another folio: and weeding out those other folios is
precisely what the "folio != pmd_folio((*pmd)" check (and the "risk of
replacing the wrong folio" comment a few lines above it) is for."
BUG: unable to handle page fault for address: ffffea60001db008
CPU: 0 UID: 0 PID: 2199114 Comm: tee Not tainted 6.14.0+ #4 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:split_huge_pmd_locked+0x3b5/0x2b60
Call Trace:
<TASK>
try_to_migrate_one+0x28c/0x3730
rmap_walk_anon+0x4f6/0x770
unmap_folio+0x196/0x1f0
split_huge_page_to_list_to_order+0x9f6/0x1560
deferred_split_scan+0xac5/0x12a0
shrinker_debugfs_scan_write+0x376/0x470
full_proxy_write+0x15c/0x220
vfs_write+0x2fc/0xcb0
ksys_write+0x146/0x250
do_syscall_64+0x6a/0x120
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The bug is found by syzkaller on an internal kernel, then confirmed on
upstream. |
| In the Linux kernel, the following vulnerability has been resolved:
qibfs: fix _another_ leak
failure to allocate inode => leaked dentry...
this one had been there since the initial merge; to be fair,
if we are that far OOM, the odds of failing at that particular
allocation are low... |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wl1251: fix memory leak in wl1251_tx_work
The skb dequeued from tx_queue is lost when wl1251_ps_elp_wakeup fails
with a -ETIMEDOUT error. Fix that by queueing the skb back to tx_queue. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: Fix sc7280 lpass potential buffer overflow
Case values introduced in commit
5f78e1fb7a3e ("ASoC: qcom: Add driver support for audioreach solution")
cause out of bounds access in arrays of sc7280 driver data (e.g. in case
of RX_CODEC_DMA_RX_0 in sc7280_snd_hw_params()).
Redefine LPASS_MAX_PORTS to consider the maximum possible port id for
q6dsp as sc7280 driver utilizes some of those values.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: mtk-pmic-keys - fix possible null pointer dereference
In mtk_pmic_keys_probe, the regs parameter is only set if the button is
parsed in the device tree. However, on hardware where the button is left
floating, that node will most likely be removed not to enable that
input. In that case the code will try to dereference a null pointer.
Let's use the regs struct instead as it is defined for all supported
platforms. Note that it is ok setting the key reg even if that latter is
disabled as the interrupt won't be enabled anyway. |