| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The acceleration support for the "REP MOVS" instruction in Xen 4.4.x, 3.2.x, and earlier lacks properly bounds checking for memory mapped I/O (MMIO) emulated in the hypervisor, which allows local HVM guests to cause a denial of service (host crash) via unspecified vectors. |
| The HVMOP_set_mem_access HVM control operations in Xen 4.1.x for 32-bit and 4.1.x through 4.4.x for 64-bit allow local guest administrators to cause a denial of service (CPU consumption) by leveraging access to certain service domains for HVM guests and a large input. |
| The x86_emulate function in arch/x86/x86_emulate/x86_emulate.c in Xen 3.3.x through 4.4.x does not check the supervisor mode permissions for instructions that generate software interrupts, which allows local HVM guest users to cause a denial of service (guest crash) via unspecified vectors. |
| The vgic_distr_mmio_write function in the virtual guest interrupt controller (GIC) distributor (arch/arm/vgic.c) in Xen 4.4.x, when running on an ARM system, allows local guest users to cause a denial of service (NULL pointer dereference and host crash) via unspecified vectors. |
| Xen 4.4.x, when running on an ARM system, does not properly context switch the CNTKCTL_EL1 register, which allows local guest users to modify the hardware timers and cause a denial of service (crash) via unspecified vectors. |
| Off-by-one error in the flask_security_avc_cachestats function in xsm/flask/flask_op.c in Xen 4.2.x and 4.3.x, when the maximum number of physical CPUs are in use, allows local users to cause a denial of service (host crash) or obtain sensitive information from hypervisor memory by leveraging a FLASK_AVC_CACHESTAT hypercall, which triggers a buffer over-read. |
| Xen 4.4.x, when running on an ARM system and "handling an unknown system register access from 64-bit userspace," returns to an instruction of the trap handler for kernel space faults instead of an instruction that is associated with faults in 64-bit userspace, which allows local guest users to cause a denial of service (crash) and possibly gain privileges via a crafted process. |
| The ARM image loading functionality in Xen 4.4.x does not properly validate kernel length, which allows local users to read system memory or cause a denial of service (crash) via a crafted 32-bit ARM guest kernel in an image, which triggers a buffer overflow. |
| Buffer overflow in Xen 4.4.x allows local users to read system memory or cause a denial of service (crash) via a crafted 32-bit guest kernel, related to searching for an appended DTB. |
| Xen 4.4.x does not properly check alignment, which allows local users to cause a denial of service (crash) via an unspecified field in a DTB header in a 32-bit guest kernel. |
| Certain MMU virtualization operations in Xen 4.2.x through 4.4.x before the xsa97-hap patch, when using Hardware Assisted Paging (HAP), are not preemptible, which allows local HVM guest to cause a denial of service (vcpu consumption) by invoking these operations, which process every page assigned to a guest, a different vulnerability than CVE-2014-5149. |
| The libxl toolstack library in Xen 4.1.x through 4.6.x does not properly release mappings of files used as kernels and initial ramdisks when managing multiple domains in the same process, which allows attackers to cause a denial of service (memory and disk consumption) by starting domains. |
| Xen 3.3 through 4.1, when XSM is enabled, allows local users to cause a denial of service via vectors related to a "large memory allocation," a different vulnerability than CVE-2014-1891, CVE-2014-1893, and CVE-2014-1894. |
| Multiple integer overflows in unspecified suboperations in the flask hypercall in Xen 3.2.x and earlier, when XSM is enabled, allow local users to cause a denial of service (processor fault) via unspecified vectors, a different vulnerability than CVE-2014-1891, CVE-2014-1892, and CVE-2014-1893. |
| Xen 3.2.x through 4.4.x does not properly clean memory pages recovered from guests, which allows local guest OS users to obtain sensitive information via unspecified vectors. |
| The alloc_domain_struct function in arch/arm/domain.c in Xen 4.4.x, when running on an ARM platform, does not properly initialize the structure containing the grant table pages for a domain, which allows local guest administrators to obtain sensitive information via the GNTTABOP_setup_table subhypercall. |
| The KVM subsystem in the Linux kernel through 4.2.6, and Xen 4.3.x through 4.6.x, allows guest OS users to cause a denial of service (host OS panic or hang) by triggering many #AC (aka Alignment Check) exceptions, related to svm.c and vmx.c. |
| The libxl device-handling in Xen through 4.6.x allows local guest OS users with access to the driver domain to cause a denial of service (management tool confusion) by manipulating information in the backend directories in xenstore. |
| Buffer overflow in Xen 4.7.x and earlier allows local x86 HVM guest OS administrators on guests running with shadow paging to cause a denial of service via a pagetable update. |
| Xen 4.6.x, 4.5.x, 4.4.x, 4.3.x, and earlier do not initialize x86 FPU stack and XMM registers when XSAVE/XRSTOR are not used to manage guest extended register state, which allows local guest domains to obtain sensitive information from other domains via unspecified vectors. |