CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The Time Tracker plugin for WordPress is vulnerable to unauthorized modification and loss of data due to a missing capability check on the 'tt_update_table_function' and 'tt_delete_record_function' functions in all versions up to, and including, 3.1.0. This makes it possible for authenticated attackers, with Subscriber-level access and above, to update options such as user registration and default role, allowing anyone to register as an Administrator, and to delete limited data from the database. |
A vulnerability was detected in FoxCMS up to 1.24. Affected by this issue is the function batchCope of the file /app/admin/controller/Images.php. The manipulation of the argument ids results in sql injection. It is possible to launch the attack remotely. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
SQL Injection in Online Fire Reporting System v1.2 by PHPGurukul. This vulnerability allows an attacker to retrieve, create, update and delete database via
'todate' parameter in the endpoint '/ofrs/admin/bwdates-report-result.php'. |
SQL Injection in Online Fire Reporting System v1.2 by PHPGurukul. This vulnerability allows an attacker to retrieve, create, update and delete database via
'requestid' parameter in the endpoint '/ofrs/details.php'. |
Stored Cross Site Scripting in Online Fire Reporting System v1.2 by PHPGurukul, that consists in a stored authenticated XSS due to the lack of propper validation of user inputs 'remark', 'status' and 'takeaction' parameters via POST at the endpoint '/ofrs/admin/request-details.php'. This vulnerability could allow a remote user to send a specially crafted query to an authenticated user and steal its cookie session details. |
Stored Cross Site Scripting in Online Fire Reporting System v1.2 by PHPGurukul, that consists in a stored authenticated XSS due to the lack of propper validation of user inputs 'fullname', 'location' and 'message' parameters via POST at the endpoint '/ofrs/reporting.php'. This vulnerability could allow a remote user to send a specially crafted query to an authenticated user and steal its cookie session details. |
Stored Cross Site Scripting in Online Fire Reporting System v1.2 by PHPGurukul, that consists in a stored authenticated XSS due to the lack of propper validation of user inputs 'fromdate' and 'todate' parameters via POST at the endpoint '/ofrs/admin/bwdates-report-result.php'. This vulnerability could allow a remote user to send a specially crafted query to an authenticated user and steal its cookie session details. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: fix ida_free call while not allocated
In the snd_utimer_create() function, if the kasprintf() function return
NULL, snd_utimer_put_id() will be called, finally use ida_free()
to free the unallocated id 0.
the syzkaller reported the following information:
------------[ cut here ]------------
ida_free called for id=0 which is not allocated.
WARNING: CPU: 1 PID: 1286 at lib/idr.c:592 ida_free+0x1fd/0x2f0 lib/idr.c:592
Modules linked in:
CPU: 1 UID: 0 PID: 1286 Comm: syz-executor164 Not tainted 6.15.8 #3 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
RIP: 0010:ida_free+0x1fd/0x2f0 lib/idr.c:592
Code: f8 fc 41 83 fc 3e 76 69 e8 70 b2 f8 (...)
RSP: 0018:ffffc900007f79c8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 1ffff920000fef3b RCX: ffffffff872176a5
RDX: ffff88800369d200 RSI: 0000000000000000 RDI: ffff88800369d200
RBP: 0000000000000000 R08: ffffffff87ba60a5 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000002 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f6f1abc1740(0000) GS:ffff8880d76a0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6f1ad7a784 CR3: 000000007a6e2000 CR4: 00000000000006f0
Call Trace:
<TASK>
snd_utimer_put_id sound/core/timer.c:2043 [inline] [snd_timer]
snd_utimer_create+0x59b/0x6a0 sound/core/timer.c:2184 [snd_timer]
snd_utimer_ioctl_create sound/core/timer.c:2202 [inline] [snd_timer]
__snd_timer_user_ioctl.isra.0+0x724/0x1340 sound/core/timer.c:2287 [snd_timer]
snd_timer_user_ioctl+0x75/0xc0 sound/core/timer.c:2298 [snd_timer]
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x198/0x200 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x7b/0x160 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
The utimer->id should be set properly before the kasprintf() function,
ensures the snd_utimer_put_id() function will free the allocated id. |
In the Linux kernel, the following vulnerability has been resolved:
mm/smaps: fix race between smaps_hugetlb_range and migration
smaps_hugetlb_range() handles the pte without holdling ptl, and may be
concurrenct with migration, leaing to BUG_ON in pfn_swap_entry_to_page().
The race is as follows.
smaps_hugetlb_range migrate_pages
huge_ptep_get
remove_migration_ptes
folio_unlock
pfn_swap_entry_folio
BUG_ON
To fix it, hold ptl lock in smaps_hugetlb_range(). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: shutdown driver when hardware is unreliable
In rare cases, ath10k may lose connection with the PCIe bus due to
some unknown reasons, which could further lead to system crashes during
resuming due to watchdog timeout:
ath10k_pci 0000:01:00.0: wmi command 20486 timeout, restarting hardware
ath10k_pci 0000:01:00.0: already restarting
ath10k_pci 0000:01:00.0: failed to stop WMI vdev 0: -11
ath10k_pci 0000:01:00.0: failed to stop vdev 0: -11
ieee80211 phy0: PM: **** DPM device timeout ****
Call Trace:
panic+0x125/0x315
dpm_watchdog_set+0x54/0x54
dpm_watchdog_handler+0x57/0x57
call_timer_fn+0x31/0x13c
At this point, all WMI commands will timeout and attempt to restart
device. So set a threshold for consecutive restart failures. If the
threshold is exceeded, consider the hardware is unreliable and all
ath10k operations should be skipped to avoid system crash.
fail_cont_count and pending_recovery are atomic variables, and
do not involve complex conditional logic. Therefore, even if recovery
check and reconfig complete are executed concurrently, the recovery
mechanism will not be broken.
Tested-on: QCA6174 hw3.2 PCI WLAN.RM.4.4.1-00288-QCARMSWPZ-1 |
Insecure Direct Object Reference (IDOR) vulnerability in Liferay Portal 7.4.0 through 7.4.3.124, and Liferay DXP 2024.Q2.0 through 2024.Q2.7, 2024.Q1.1 through 2024.Q1.12, and 7.4 GA through update 92 allows remote authenticated users to access a workflow definition by name via the API |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: add null check
[WHY]
Prevents null pointer dereferences to enhance function robustness
[HOW]
Adds early null check and return false if invalid. |
In the Linux kernel, the following vulnerability has been resolved:
jbd2: prevent softlockup in jbd2_log_do_checkpoint()
Both jbd2_log_do_checkpoint() and jbd2_journal_shrink_checkpoint_list()
periodically release j_list_lock after processing a batch of buffers to
avoid long hold times on the j_list_lock. However, since both functions
contend for j_list_lock, the combined time spent waiting and processing
can be significant.
jbd2_journal_shrink_checkpoint_list() explicitly calls cond_resched() when
need_resched() is true to avoid softlockups during prolonged operations.
But jbd2_log_do_checkpoint() only exits its loop when need_resched() is
true, relying on potentially sleeping functions like __flush_batch() or
wait_on_buffer() to trigger rescheduling. If those functions do not sleep,
the kernel may hit a softlockup.
watchdog: BUG: soft lockup - CPU#3 stuck for 156s! [kworker/u129:2:373]
CPU: 3 PID: 373 Comm: kworker/u129:2 Kdump: loaded Not tainted 6.6.0+ #10
Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.27 06/13/2017
Workqueue: writeback wb_workfn (flush-7:2)
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : native_queued_spin_lock_slowpath+0x358/0x418
lr : jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
Call trace:
native_queued_spin_lock_slowpath+0x358/0x418
jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
__jbd2_log_wait_for_space+0xfc/0x2f8 [jbd2]
add_transaction_credits+0x3bc/0x418 [jbd2]
start_this_handle+0xf8/0x560 [jbd2]
jbd2__journal_start+0x118/0x228 [jbd2]
__ext4_journal_start_sb+0x110/0x188 [ext4]
ext4_do_writepages+0x3dc/0x740 [ext4]
ext4_writepages+0xa4/0x190 [ext4]
do_writepages+0x94/0x228
__writeback_single_inode+0x48/0x318
writeback_sb_inodes+0x204/0x590
__writeback_inodes_wb+0x54/0xf8
wb_writeback+0x2cc/0x3d8
wb_do_writeback+0x2e0/0x2f8
wb_workfn+0x80/0x2a8
process_one_work+0x178/0x3e8
worker_thread+0x234/0x3b8
kthread+0xf0/0x108
ret_from_fork+0x10/0x20
So explicitly call cond_resched() in jbd2_log_do_checkpoint() to avoid
softlockup. |
In the Linux kernel, the following vulnerability has been resolved:
x86/vmscape: Add conditional IBPB mitigation
VMSCAPE is a vulnerability that exploits insufficient branch predictor
isolation between a guest and a userspace hypervisor (like QEMU). Existing
mitigations already protect kernel/KVM from a malicious guest. Userspace
can additionally be protected by flushing the branch predictors after a
VMexit.
Since it is the userspace that consumes the poisoned branch predictors,
conditionally issue an IBPB after a VMexit and before returning to
userspace. Workloads that frequently switch between hypervisor and
userspace will incur the most overhead from the new IBPB.
This new IBPB is not integrated with the existing IBPB sites. For
instance, a task can use the existing speculation control prctl() to
get an IBPB at context switch time. With this implementation, the
IBPB is doubled up: one at context switch and another before running
userspace.
The intent is to integrate and optimize these cases post-embargo.
[ dhansen: elaborate on suboptimal IBPB solution ] |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Decrement TID on RX peer frag setup error handling
Currently, TID is not decremented before peer cleanup, during error
handling path of ath12k_dp_rx_peer_frag_setup(). This could lead to
out-of-bounds access in peer->rx_tid[].
Hence, add a decrement operation for TID, before peer cleanup to
ensures proper cleanup and prevents out-of-bounds access issues when
the RX peer frag setup fails.
Found during code review. Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
dm: dm-crypt: Do not partially accept write BIOs with zoned targets
Read and write operations issued to a dm-crypt target may be split
according to the dm-crypt internal limits defined by the max_read_size
and max_write_size module parameters (default is 128 KB). The intent is
to improve processing time of large BIOs by splitting them into smaller
operations that can be parallelized on different CPUs.
For zoned dm-crypt targets, this BIO splitting is still done but without
the parallel execution to ensure that the issuing order of write
operations to the underlying devices remains sequential. However, the
splitting itself causes other problems:
1) Since dm-crypt relies on the block layer zone write plugging to
handle zone append emulation using regular write operations, the
reminder of a split write BIO will always be plugged into the target
zone write plugged. Once the on-going write BIO finishes, this
reminder BIO is unplugged and issued from the zone write plug work.
If this reminder BIO itself needs to be split, the reminder will be
re-issued and plugged again, but that causes a call to a
blk_queue_enter(), which may block if a queue freeze operation was
initiated. This results in a deadlock as DM submission still holds
BIOs that the queue freeze side is waiting for.
2) dm-crypt relies on the emulation done by the block layer using
regular write operations for processing zone append operations. This
still requires to properly return the written sector as the BIO
sector of the original BIO. However, this can be done correctly only
and only if there is a single clone BIO used for processing the
original zone append operation issued by the user. If the size of a
zone append operation is larger than dm-crypt max_write_size, then
the orginal BIO will be split and processed as a chain of regular
write operations. Such chaining result in an incorrect written sector
being returned to the zone append issuer using the original BIO
sector. This in turn results in file system data corruptions using
xfs or btrfs.
Fix this by modifying get_max_request_size() to always return the size
of the BIO to avoid it being split with dm_accpet_partial_bio() in
crypt_map(). get_max_request_size() is renamed to
get_max_request_sectors() to clarify the unit of the value returned
and its interface is changed to take a struct dm_target pointer and a
pointer to the struct bio being processed. In addition to this change,
to ensure that crypt_alloc_buffer() works correctly, set the dm-crypt
device max_hw_sectors limit to be at most
BIO_MAX_VECS << PAGE_SECTORS_SHIFT (1 MB with a 4KB page architecture).
This forces DM core to split write BIOs before passing them to
crypt_map(), and thus guaranteeing that dm-crypt can always accept an
entire write BIO without needing to split it.
This change does not have any effect on the read path of dm-crypt. Read
operations can still be split and the BIO fragments processed in
parallel. There is also no impact on the performance of the write path
given that all zone write BIOs were already processed inline instead of
in parallel.
This change also does not affect in any way regular dm-crypt block
devices. |
In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix lockdep warning during rmmod
The commit under the Fixes tag added a netdev_assert_locked() in
bnxt_free_ntp_fltrs(). The lock should be held during normal run-time
but the assert will be triggered (see below) during bnxt_remove_one()
which should not need the lock. The netdev is already unregistered by
then. Fix it by calling netdev_assert_locked_or_invisible() which will
not assert if the netdev is unregistered.
WARNING: CPU: 5 PID: 2241 at ./include/net/netdev_lock.h:17 bnxt_free_ntp_fltrs+0xf8/0x100 [bnxt_en]
Modules linked in: rpcrdma rdma_cm iw_cm ib_cm configfs ib_core bnxt_en(-) bridge stp llc x86_pkg_temp_thermal xfs tg3 [last unloaded: bnxt_re]
CPU: 5 UID: 0 PID: 2241 Comm: rmmod Tainted: G S W 6.16.0 #2 PREEMPT(voluntary)
Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN
Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.4.3 01/17/2017
RIP: 0010:bnxt_free_ntp_fltrs+0xf8/0x100 [bnxt_en]
Code: 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 48 8b 47 60 be ff ff ff ff 48 8d b8 28 0c 00 00 e8 d0 cf 41 c3 85 c0 0f 85 2e ff ff ff <0f> 0b e9 27 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
RSP: 0018:ffffa92082387da0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff9e5b593d8000 RCX: 0000000000000001
RDX: 0000000000000001 RSI: ffffffff83dc9a70 RDI: ffffffff83e1a1cf
RBP: ffff9e5b593d8c80 R08: 0000000000000000 R09: ffffffff8373a2b3
R10: 000000008100009f R11: 0000000000000001 R12: 0000000000000001
R13: ffffffffc01c4478 R14: dead000000000122 R15: dead000000000100
FS: 00007f3a8a52c740(0000) GS:ffff9e631ad1c000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055bb289419c8 CR3: 000000011274e001 CR4: 00000000003706f0
Call Trace:
<TASK>
bnxt_remove_one+0x57/0x180 [bnxt_en]
pci_device_remove+0x39/0xc0
device_release_driver_internal+0xa5/0x130
driver_detach+0x42/0x90
bus_remove_driver+0x61/0xc0
pci_unregister_driver+0x38/0x90
bnxt_exit+0xc/0x7d0 [bnxt_en] |
In the Linux kernel, the following vulnerability has been resolved:
jfs: truncate good inode pages when hard link is 0
The fileset value of the inode copy from the disk by the reproducer is
AGGR_RESERVED_I. When executing evict, its hard link number is 0, so its
inode pages are not truncated. This causes the bugon to be triggered when
executing clear_inode() because nrpages is greater than 0. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Drop WARN_ON_ONCE() from flush_cache_vmap
I have observed warning to occassionally trigger. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix race between quota disable and quota rescan ioctl
There's a race between a task disabling quotas and another running the
rescan ioctl that can result in a use-after-free of qgroup records from
the fs_info->qgroup_tree rbtree.
This happens as follows:
1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan();
2) Task B enters btrfs_quota_disable() and calls
btrfs_qgroup_wait_for_completion(), which does nothing because at that
point fs_info->qgroup_rescan_running is false (it wasn't set yet by
task A);
3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups
from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock;
4) Task A enters qgroup_rescan_zero_tracking() which starts iterating
the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock,
but task B is freeing qgroup records from that tree without holding
the lock, resulting in a use-after-free.
Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config().
Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas
were already disabled. |