| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Add tx check to prevent skb leak
Below is a summary of how the driver stores a reference to an skb during
transmit:
tx_buff[free_map[consumer_index]]->skb = new_skb;
free_map[consumer_index] = IBMVNIC_INVALID_MAP;
consumer_index ++;
Where variable data looks like this:
free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3]
consumer_index^
tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null]
The driver has checks to ensure that free_map[consumer_index] pointed to
a valid index but there was no check to ensure that this index pointed
to an unused/null skb address. So, if, by some chance, our free_map and
tx_buff lists become out of sync then we were previously risking an
skb memory leak. This could then cause tcp congestion control to stop
sending packets, eventually leading to ETIMEDOUT.
Therefore, add a conditional to ensure that the skb address is null. If
not then warn the user (because this is still a bug that should be
patched) and free the old pointer to prevent memleak/tcp problems. |
| urllib3 is a user-friendly HTTP client library for Python. urllib3 previously wouldn't remove the HTTP request body when an HTTP redirect response using status 301, 302, or 303 after the request had its method changed from one that could accept a request body (like `POST`) to `GET` as is required by HTTP RFCs. Although this behavior is not specified in the section for redirects, it can be inferred by piecing together information from different sections and we have observed the behavior in other major HTTP client implementations like curl and web browsers. Because the vulnerability requires a previously trusted service to become compromised in order to have an impact on confidentiality we believe the exploitability of this vulnerability is low. Additionally, many users aren't putting sensitive data in HTTP request bodies, if this is the case then this vulnerability isn't exploitable. Both of the following conditions must be true to be affected by this vulnerability: 1. Using urllib3 and submitting sensitive information in the HTTP request body (such as form data or JSON) and 2. The origin service is compromised and starts redirecting using 301, 302, or 303 to a malicious peer or the redirected-to service becomes compromised. This issue has been addressed in versions 1.26.18 and 2.0.7 and users are advised to update to resolve this issue. Users unable to update should disable redirects for services that aren't expecting to respond with redirects with `redirects=False` and disable automatic redirects with `redirects=False` and handle 301, 302, and 303 redirects manually by stripping the HTTP request body. |
| urllib3 is a user-friendly HTTP client library for Python. urllib3 doesn't treat the `Cookie` HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a `Cookie` header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. This issue has been patched in urllib3 version 1.26.17 or 2.0.5. |
| JavaScript pre-processing can be used by the attacker to gain access to the file system (read-only access on behalf of user "zabbix") on the Zabbix Server or Zabbix Proxy, potentially leading to unauthorized access to sensitive data. |
| pgjdbc is an open source postgresql JDBC Driver. In affected versions a prepared statement using either `PreparedStatement.setText(int, InputStream)` or `PreparedStatemet.setBytea(int, InputStream)` will create a temporary file if the InputStream is larger than 2k. This will create a temporary file which is readable by other users on Unix like systems, but not MacOS. On Unix like systems, the system's temporary directory is shared between all users on that system. Because of this, when files and directories are written into this directory they are, by default, readable by other users on that same system. This vulnerability does not allow other users to overwrite the contents of these directories or files. This is purely an information disclosure vulnerability. Because certain JDK file system APIs were only added in JDK 1.7, this this fix is dependent upon the version of the JDK you are using. Java 1.7 and higher users: this vulnerability is fixed in 4.5.0. Java 1.6 and lower users: no patch is available. If you are unable to patch, or are stuck running on Java 1.6, specifying the java.io.tmpdir system environment variable to a directory that is exclusively owned by the executing user will mitigate this vulnerability. |
| There's a flaw in Python 3's pydoc. A local or adjacent attacker who discovers or is able to convince another local or adjacent user to start a pydoc server could access the server and use it to disclose sensitive information belonging to the other user that they would not normally be able to access. The highest risk of this flaw is to data confidentiality. This flaw affects Python versions before 3.8.9, Python versions before 3.9.3 and Python versions before 3.10.0a7. |
| This issue was addressed through improved state management. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. A malicious app may be able to access arbitrary files. |
| The issue was addressed with improved checks. This issue is fixed in Xcode 16.3. A malicious app may be able to access private information. |
| This issue was addressed with improved redaction of sensitive information. This issue is fixed in iOS 18.4 and iPadOS 18.4, tvOS 18.4, macOS Sequoia 15.4. An app may be able to access sensitive user data. |
| The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4. An app may be able to access protected user data. |
| The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. An app may be able to bypass Privacy preferences. |
| A logic issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to modify protected parts of the file system. |
| This issue was addressed with improved redaction of sensitive information. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. Deleting a conversation in Messages may expose user contact information in system logging. |
| This issue was addressed through improved state management. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. A malicious application may be able to leak sensitive user information. |
| An information disclosure issue was addressed with improved privacy controls. This issue is fixed in macOS Sequoia 15.3. An app may be able to access user-sensitive data. |
| A downgrade issue was addressed with additional code-signing restrictions. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. An app may be able to access sensitive user data. |
| The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.4, macOS Sequoia 15.3, macOS Sonoma 14.7.3, macOS Ventura 13.7.3. An app may be able to determine a user’s current location. |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Security: Privileges). Supported versions that are affected are 9.1.0 and prior. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized read access to a subset of MySQL Server accessible data. CVSS 3.1 Base Score 4.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N). |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_hash: unaligned atomic read on struct nft_set_ext
Access to genmask field in struct nft_set_ext results in unaligned
atomic read:
[ 72.130109] Unable to handle kernel paging request at virtual address ffff0000c2bb708c
[ 72.131036] Mem abort info:
[ 72.131213] ESR = 0x0000000096000021
[ 72.131446] EC = 0x25: DABT (current EL), IL = 32 bits
[ 72.132209] SET = 0, FnV = 0
[ 72.133216] EA = 0, S1PTW = 0
[ 72.134080] FSC = 0x21: alignment fault
[ 72.135593] Data abort info:
[ 72.137194] ISV = 0, ISS = 0x00000021, ISS2 = 0x00000000
[ 72.142351] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 72.145989] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 72.150115] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000237d27000
[ 72.154893] [ffff0000c2bb708c] pgd=0000000000000000, p4d=180000023ffff403, pud=180000023f84b403, pmd=180000023f835403,
+pte=0068000102bb7707
[ 72.163021] Internal error: Oops: 0000000096000021 [#1] SMP
[...]
[ 72.170041] CPU: 7 UID: 0 PID: 54 Comm: kworker/7:0 Tainted: G E 6.13.0-rc3+ #2
[ 72.170509] Tainted: [E]=UNSIGNED_MODULE
[ 72.170720] Hardware name: QEMU QEMU Virtual Machine, BIOS edk2-stable202302-for-qemu 03/01/2023
[ 72.171192] Workqueue: events_power_efficient nft_rhash_gc [nf_tables]
[ 72.171552] pstate: 21400005 (nzCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 72.171915] pc : nft_rhash_gc+0x200/0x2d8 [nf_tables]
[ 72.172166] lr : nft_rhash_gc+0x128/0x2d8 [nf_tables]
[ 72.172546] sp : ffff800081f2bce0
[ 72.172724] x29: ffff800081f2bd40 x28: ffff0000c2bb708c x27: 0000000000000038
[ 72.173078] x26: ffff0000c6780ef0 x25: ffff0000c643df00 x24: ffff0000c6778f78
[ 72.173431] x23: 000000000000001a x22: ffff0000c4b1f000 x21: ffff0000c6780f78
[ 72.173782] x20: ffff0000c2bb70dc x19: ffff0000c2bb7080 x18: 0000000000000000
[ 72.174135] x17: ffff0000c0a4e1c0 x16: 0000000000003000 x15: 0000ac26d173b978
[ 72.174485] x14: ffffffffffffffff x13: 0000000000000030 x12: ffff0000c6780ef0
[ 72.174841] x11: 0000000000000000 x10: ffff800081f2bcf8 x9 : ffff0000c3000000
[ 72.175193] x8 : 00000000000004be x7 : 0000000000000000 x6 : 0000000000000000
[ 72.175544] x5 : 0000000000000040 x4 : ffff0000c3000010 x3 : 0000000000000000
[ 72.175871] x2 : 0000000000003a98 x1 : ffff0000c2bb708c x0 : 0000000000000004
[ 72.176207] Call trace:
[ 72.176316] nft_rhash_gc+0x200/0x2d8 [nf_tables] (P)
[ 72.176653] process_one_work+0x178/0x3d0
[ 72.176831] worker_thread+0x200/0x3f0
[ 72.176995] kthread+0xe8/0xf8
[ 72.177130] ret_from_fork+0x10/0x20
[ 72.177289] Code: 54fff984 d503201f d2800080 91003261 (f820303f)
[ 72.177557] ---[ end trace 0000000000000000 ]---
Align struct nft_set_ext to word size to address this and
documentation it.
pahole reports that this increases the size of elements for rhash and
pipapo in 8 bytes on x86_64. |
| The issue was addressed with improved handling of protocols. This issue is fixed in macOS Ventura 13.7.5, macOS Sonoma 14.7.5. An attacker in a privileged network position can track a user's activity. |