CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc2: Fix memory leak in dwc2_hcd_init
usb_create_hcd will alloc memory for hcd, and we should
call usb_put_hcd to free it when platform_get_resource()
fails to prevent memory leak.
goto error2 label instead error1 to fix this. |
In the Linux kernel, the following vulnerability has been resolved:
i2c: piix4: Fix a memory leak in the EFCH MMIO support
The recently added support for EFCH MMIO regions introduced a memory
leak in that code path. The leak is caused by the fact that
release_resource() merely removes the resource from the tree but does
not free its memory. We need to call release_mem_region() instead,
which does free the memory. As a nice side effect, this brings back
some symmetry between the legacy and MMIO paths. |
In the Linux kernel, the following vulnerability has been resolved:
tracing/histograms: Fix memory leak problem
This reverts commit 46bbe5c671e06f070428b9be142cc4ee5cedebac.
As commit 46bbe5c671e0 ("tracing: fix double free") said, the
"double free" problem reported by clang static analyzer is:
> In parse_var_defs() if there is a problem allocating
> var_defs.expr, the earlier var_defs.name is freed.
> This free is duplicated by free_var_defs() which frees
> the rest of the list.
However, if there is a problem allocating N-th var_defs.expr:
+ in parse_var_defs(), the freed 'earlier var_defs.name' is
actually the N-th var_defs.name;
+ then in free_var_defs(), the names from 0th to (N-1)-th are freed;
IF ALLOCATING PROBLEM HAPPENED HERE!!! -+
\
|
0th 1th (N-1)-th N-th V
+-------------+-------------+-----+-------------+-----------
var_defs: | name | expr | name | expr | ... | name | expr | name | ///
+-------------+-------------+-----+-------------+-----------
These two frees don't act on same name, so there was no "double free"
problem before. Conversely, after that commit, we get a "memory leak"
problem because the above "N-th var_defs.name" is not freed.
If enable CONFIG_DEBUG_KMEMLEAK and inject a fault at where the N-th
var_defs.expr allocated, then execute on shell like:
$ echo 'hist:key=call_site:val=$v1,$v2:v1=bytes_req,v2=bytes_alloc' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
Then kmemleak reports:
unreferenced object 0xffff8fb100ef3518 (size 8):
comm "bash", pid 196, jiffies 4295681690 (age 28.538s)
hex dump (first 8 bytes):
76 31 00 00 b1 8f ff ff v1......
backtrace:
[<0000000038fe4895>] kstrdup+0x2d/0x60
[<00000000c99c049a>] event_hist_trigger_parse+0x206f/0x20e0
[<00000000ae70d2cc>] trigger_process_regex+0xc0/0x110
[<0000000066737a4c>] event_trigger_write+0x75/0xd0
[<000000007341e40c>] vfs_write+0xbb/0x2a0
[<0000000087fde4c2>] ksys_write+0x59/0xd0
[<00000000581e9cdf>] do_syscall_64+0x3a/0x80
[<00000000cf3b065c>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix handling of dummy receive descriptors
Fix memory leak caused by not handling dummy receive descriptor properly.
iavf_get_rx_buffer now sets the rx_buffer return value for dummy receive
descriptors. Without this patch, when the hardware writes a dummy
descriptor, iavf would not free the page allocated for the previous receive
buffer. This is an unlikely event but can still happen.
[Jesse: massaged commit message] |
In the Linux kernel, the following vulnerability has been resolved:
usb: usbip: fix a refcount leak in stub_probe()
usb_get_dev() is called in stub_device_alloc(). When stub_probe() fails
after that, usb_put_dev() needs to be called to release the reference.
Fix this by moving usb_put_dev() to sdev_free error path handling.
Find this by code review. |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_ct: fix ref leak when switching zones
When switching zones or network namespaces without doing a ct clear in
between, it is now leaking a reference to the old ct entry. That's
because tcf_ct_skb_nfct_cached() returns false and
tcf_ct_flow_table_lookup() may simply overwrite it.
The fix is to, as the ct entry is not reusable, free it already at
tcf_ct_skb_nfct_cached(). |
In the Linux kernel, the following vulnerability has been resolved:
tracing/histogram: Fix a potential memory leak for kstrdup()
kfree() is missing on an error path to free the memory allocated by
kstrdup():
p = param = kstrdup(data->params[i], GFP_KERNEL);
So it is better to free it via kfree(p). |
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix potential memory leak in intel_setup_irq_remapping()
After commit e3beca48a45b ("irqdomain/treewide: Keep firmware node
unconditionally allocated"). For tear down scenario, fn is only freed
after fail to allocate ir_domain, though it also should be freed in case
dmar_enable_qi returns error.
Besides free fn, irq_domain and ir_msi_domain need to be removed as well
if intel_setup_irq_remapping fails to enable queued invalidation.
Improve the rewinding path by add out_free_ir_domain and out_free_fwnode
lables per Baolu's suggestion. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix memory leak in fib6_rule_suppress
The kernel leaks memory when a `fib` rule is present in IPv6 nftables
firewall rules and a suppress_prefix rule is present in the IPv6 routing
rules (used by certain tools such as wg-quick). In such scenarios, every
incoming packet will leak an allocation in `ip6_dst_cache` slab cache.
After some hours of `bpftrace`-ing and source code reading, I tracked
down the issue to ca7a03c41753 ("ipv6: do not free rt if
FIB_LOOKUP_NOREF is set on suppress rule").
The problem with that change is that the generic `args->flags` always have
`FIB_LOOKUP_NOREF` set[1][2] but the IPv6-specific flag
`RT6_LOOKUP_F_DST_NOREF` might not be, leading to `fib6_rule_suppress` not
decreasing the refcount when needed.
How to reproduce:
- Add the following nftables rule to a prerouting chain:
meta nfproto ipv6 fib saddr . mark . iif oif missing drop
This can be done with:
sudo nft create table inet test
sudo nft create chain inet test test_chain '{ type filter hook prerouting priority filter + 10; policy accept; }'
sudo nft add rule inet test test_chain meta nfproto ipv6 fib saddr . mark . iif oif missing drop
- Run:
sudo ip -6 rule add table main suppress_prefixlength 0
- Watch `sudo slabtop -o | grep ip6_dst_cache` to see memory usage increase
with every incoming ipv6 packet.
This patch exposes the protocol-specific flags to the protocol
specific `suppress` function, and check the protocol-specific `flags`
argument for RT6_LOOKUP_F_DST_NOREF instead of the generic
FIB_LOOKUP_NOREF when decreasing the refcount, like this.
[1]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L71
[2]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L99 |
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: felix: Fix memory leak in felix_setup_mmio_filtering
Avoid a memory leak if there is not a CPU port defined.
Addresses-Coverity-ID: 1492897 ("Resource leak")
Addresses-Coverity-ID: 1492899 ("Resource leak") |
In the Linux kernel, the following vulnerability has been resolved:
hugetlb, userfaultfd: fix reservation restore on userfaultfd error
Currently in the is_continue case in hugetlb_mcopy_atomic_pte(), if we
bail out using "goto out_release_unlock;" in the cases where idx >=
size, or !huge_pte_none(), the code will detect that new_pagecache_page
== false, and so call restore_reserve_on_error(). In this case I see
restore_reserve_on_error() delete the reservation, and the following
call to remove_inode_hugepages() will increment h->resv_hugepages
causing a 100% reproducible leak.
We should treat the is_continue case similar to adding a page into the
pagecache and set new_pagecache_page to true, to indicate that there is
no reservation to restore on the error path, and we need not call
restore_reserve_on_error(). Rename new_pagecache_page to
page_in_pagecache to make that clear. |
In the Linux kernel, the following vulnerability has been resolved:
IB/qib: Fix memory leak in qib_user_sdma_queue_pkts()
The wrong goto label was used for the error case and missed cleanup of the
pkt allocation.
Addresses-Coverity-ID: 1493352 ("Resource leak") |
In the Linux kernel, the following vulnerability has been resolved:
tee: optee: Fix incorrect page free bug
Pointer to the allocated pages (struct page *page) has already
progressed towards the end of allocation. It is incorrect to perform
__free_pages(page, order) using this pointer as we would free any
arbitrary pages. Fix this by stop modifying the page pointer. |
In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: free queued packets when closing socket
As reported by syzbot [1], there is a memory leak while closing the
socket. We partially solved this issue with commit ac03046ece2b
("vsock/virtio: free packets during the socket release"), but we
forgot to drain the RX queue when the socket is definitely closed by
the scheduled work.
To avoid future issues, let's use the new virtio_transport_remove_sock()
to drain the RX queue before removing the socket from the af_vsock lists
calling vsock_remove_sock().
[1] https://syzkaller.appspot.com/bug?extid=24452624fc4c571eedd9 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: fix memory leaks and invalid access at probe error path
Deinitialize at reverse order when probe fails.
When init_sw_vars fails, rtl_deinit_core should not be called, specially
now that it destroys the rtl_wq workqueue.
And call rtl_pci_deinit and deinit_sw_vars, otherwise, memory will be
leaked.
Remove pci_set_drvdata call as it will already be cleaned up by the core
driver code and could lead to memory leaks too. cf. commit 8d450935ae7f
("wireless: rtlwifi: remove unnecessary pci_set_drvdata()") and
commit 3d86b93064c7 ("rtlwifi: Fix PCI probe error path orphaned memory"). |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_set_pipapo: fix initial map fill
The initial buffer has to be inited to all-ones, but it must restrict
it to the size of the first field, not the total field size.
After each round in the map search step, the result and the fill map
are swapped, so if we have a set where f->bsize of the first element
is smaller than m->bsize_max, those one-bits are leaked into future
rounds result map.
This makes pipapo find an incorrect matching results for sets where
first field size is not the largest.
Followup patch adds a test case to nft_concat_range.sh selftest script.
Thanks to Stefano Brivio for pointing out that we need to zero out
the remainder explicitly, only correcting memset() argument isn't enough. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: pltfrm: Dellocate HBA during ufshcd_pltfrm_remove()
This will ensure that the scsi host is cleaned up properly using
scsi_host_dev_release(). Otherwise, it may lead to memory leaks. |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfs4_openowner leak when concurrent nfsd4_open occur
The action force umount(umount -f) will attempt to kill all rpc_task even
umount operation may ultimately fail if some files remain open.
Consequently, if an action attempts to open a file, it can potentially
send two rpc_task to nfs server.
NFS CLIENT
thread1 thread2
open("file")
...
nfs4_do_open
_nfs4_do_open
_nfs4_open_and_get_state
_nfs4_proc_open
nfs4_run_open_task
/* rpc_task1 */
rpc_run_task
rpc_wait_for_completion_task
umount -f
nfs_umount_begin
rpc_killall_tasks
rpc_signal_task
rpc_task1 been wakeup
and return -512
_nfs4_do_open // while loop
...
nfs4_run_open_task
/* rpc_task2 */
rpc_run_task
rpc_wait_for_completion_task
While processing an open request, nfsd will first attempt to find or
allocate an nfs4_openowner. If it finds an nfs4_openowner that is not
marked as NFS4_OO_CONFIRMED, this nfs4_openowner will released. Since
two rpc_task can attempt to open the same file simultaneously from the
client to server, and because two instances of nfsd can run
concurrently, this situation can lead to lots of memory leak.
Additionally, when we echo 0 to /proc/fs/nfsd/threads, warning will be
triggered.
NFS SERVER
nfsd1 nfsd2 echo 0 > /proc/fs/nfsd/threads
nfsd4_open
nfsd4_process_open1
find_or_alloc_open_stateowner
// alloc oo1, stateid1
nfsd4_open
nfsd4_process_open1
find_or_alloc_open_stateowner
// find oo1, without NFS4_OO_CONFIRMED
release_openowner
unhash_openowner_locked
list_del_init(&oo->oo_perclient)
// cannot find this oo
// from client, LEAK!!!
alloc_stateowner // alloc oo2
nfsd4_process_open2
init_open_stateid
// associate oo1
// with stateid1, stateid1 LEAK!!!
nfs4_get_vfs_file
// alloc nfsd_file1 and nfsd_file_mark1
// all LEAK!!!
nfsd4_process_open2
...
write_threads
...
nfsd_destroy_serv
nfsd_shutdown_net
nfs4_state_shutdown_net
nfs4_state_destroy_net
destroy_client
__destroy_client
// won't find oo1!!!
nfsd_shutdown_generic
nfsd_file_cache_shutdown
kmem_cache_destroy
for nfsd_file_slab
and nfsd_file_mark_slab
// bark since nfsd_file1
// and nfsd_file_mark1
// still alive
=======================================================================
BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on
__kmem_cache_shutdown()
-----------------------------------------------------------------------
Slab 0xffd4000004438a80 objects=34 used=1 fp=0xff11000110e2ad28
flags=0x17ffffc0000240(workingset|head|node=0|zone=2|lastcpupid=0x1fffff)
CPU: 4 UID: 0 PID: 757 Comm: sh Not tainted 6.12.0-rc6+ #19
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dum
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
netfs/fscache: Add a memory barrier for FSCACHE_VOLUME_CREATING
In fscache_create_volume(), there is a missing memory barrier between the
bit-clearing operation and the wake-up operation. This may cause a
situation where, after a wake-up, the bit-clearing operation hasn't been
detected yet, leading to an indefinite wait. The triggering process is as
follows:
[cookie1] [cookie2] [volume_work]
fscache_perform_lookup
fscache_create_volume
fscache_perform_lookup
fscache_create_volume
fscache_create_volume_work
cachefiles_acquire_volume
clear_and_wake_up_bit
test_and_set_bit
test_and_set_bit
goto maybe_wait
goto no_wait
In the above process, cookie1 and cookie2 has the same volume. When cookie1
enters the -no_wait- process, it will clear the bit and wake up the waiting
process. If a barrier is missing, it may cause cookie2 to remain in the
-wait- process indefinitely.
In commit 3288666c7256 ("fscache: Use clear_and_wake_up_bit() in
fscache_create_volume_work()"), barriers were added to similar operations
in fscache_create_volume_work(), but fscache_create_volume() was missed.
By combining the clear and wake operations into clear_and_wake_up_bit() to
fix this issue. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/gfx9: Add Cleaner Shader Deinitialization in gfx_v9_0 Module
This commit addresses an omission in the previous patch related to the
cleaner shader support for GFX9 hardware. Specifically, it adds the
necessary deinitialization code for the cleaner shader in the
gfx_v9_0_sw_fini function.
The added line amdgpu_gfx_cleaner_shader_sw_fini(adev); ensures that any
allocated resources for the cleaner shader are freed correctly, avoiding
potential memory leaks and ensuring that the GPU state is clean for the
next initialization sequence. |