Search Results (4560 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-53043 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mctp i2c: handle NULL header address daddr can be NULL if there is no neighbour table entry present, in that case the tx packet should be dropped. saddr will usually be set by MCTP core, but check for NULL in case a packet is transmitted by a different protocol.
CVE-2024-50296 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when uninstalling driver When the driver is uninstalled and the VF is disabled concurrently, a kernel crash occurs. The reason is that the two actions call function pci_disable_sriov(). The num_VFs is checked to determine whether to release the corresponding resources. During the second calling, num_VFs is not 0 and the resource release function is called. However, the corresponding resource has been released during the first invoking. Therefore, the problem occurs: [15277.839633][T50670] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 ... [15278.131557][T50670] Call trace: [15278.134686][T50670] klist_put+0x28/0x12c [15278.138682][T50670] klist_del+0x14/0x20 [15278.142592][T50670] device_del+0xbc/0x3c0 [15278.146676][T50670] pci_remove_bus_device+0x84/0x120 [15278.151714][T50670] pci_stop_and_remove_bus_device+0x6c/0x80 [15278.157447][T50670] pci_iov_remove_virtfn+0xb4/0x12c [15278.162485][T50670] sriov_disable+0x50/0x11c [15278.166829][T50670] pci_disable_sriov+0x24/0x30 [15278.171433][T50670] hnae3_unregister_ae_algo_prepare+0x60/0x90 [hnae3] [15278.178039][T50670] hclge_exit+0x28/0xd0 [hclge] [15278.182730][T50670] __se_sys_delete_module.isra.0+0x164/0x230 [15278.188550][T50670] __arm64_sys_delete_module+0x1c/0x30 [15278.193848][T50670] invoke_syscall+0x50/0x11c [15278.198278][T50670] el0_svc_common.constprop.0+0x158/0x164 [15278.203837][T50670] do_el0_svc+0x34/0xcc [15278.207834][T50670] el0_svc+0x20/0x30 For details, see the following figure. rmmod hclge disable VFs ---------------------------------------------------- hclge_exit() sriov_numvfs_store() ... device_lock() pci_disable_sriov() hns3_pci_sriov_configure() pci_disable_sriov() sriov_disable() sriov_disable() if !num_VFs : if !num_VFs : return; return; sriov_del_vfs() sriov_del_vfs() ... ... klist_put() klist_put() ... ... num_VFs = 0; num_VFs = 0; device_unlock(); In this patch, when driver is removing, we get the device_lock() to protect num_VFs, just like sriov_numvfs_store().
CVE-2024-50292 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: stm32: spdifrx: fix dma channel release in stm32_spdifrx_remove In case of error when requesting ctrl_chan DMA channel, ctrl_chan is not null. So the release of the dma channel leads to the following issue: [ 4.879000] st,stm32-spdifrx 500d0000.audio-controller: dma_request_slave_channel error -19 [ 4.888975] Unable to handle kernel NULL pointer dereference at virtual address 000000000000003d [...] [ 5.096577] Call trace: [ 5.099099] dma_release_channel+0x24/0x100 [ 5.103235] stm32_spdifrx_remove+0x24/0x60 [snd_soc_stm32_spdifrx] [ 5.109494] stm32_spdifrx_probe+0x320/0x4c4 [snd_soc_stm32_spdifrx] To avoid this issue, release channel only if the pointer is valid.
CVE-2024-50265 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: remove entry once instead of null-ptr-dereference in ocfs2_xa_remove() Syzkaller is able to provoke null-ptr-dereference in ocfs2_xa_remove(): [ 57.319872] (a.out,1161,7):ocfs2_xa_remove:2028 ERROR: status = -12 [ 57.320420] (a.out,1161,7):ocfs2_xa_cleanup_value_truncate:1999 ERROR: Partial truncate while removing xattr overlay.upper. Leaking 1 clusters and removing the entry [ 57.321727] BUG: kernel NULL pointer dereference, address: 0000000000000004 [...] [ 57.325727] RIP: 0010:ocfs2_xa_block_wipe_namevalue+0x2a/0xc0 [...] [ 57.331328] Call Trace: [ 57.331477] <TASK> [...] [ 57.333511] ? do_user_addr_fault+0x3e5/0x740 [ 57.333778] ? exc_page_fault+0x70/0x170 [ 57.334016] ? asm_exc_page_fault+0x2b/0x30 [ 57.334263] ? __pfx_ocfs2_xa_block_wipe_namevalue+0x10/0x10 [ 57.334596] ? ocfs2_xa_block_wipe_namevalue+0x2a/0xc0 [ 57.334913] ocfs2_xa_remove_entry+0x23/0xc0 [ 57.335164] ocfs2_xa_set+0x704/0xcf0 [ 57.335381] ? _raw_spin_unlock+0x1a/0x40 [ 57.335620] ? ocfs2_inode_cache_unlock+0x16/0x20 [ 57.335915] ? trace_preempt_on+0x1e/0x70 [ 57.336153] ? start_this_handle+0x16c/0x500 [ 57.336410] ? preempt_count_sub+0x50/0x80 [ 57.336656] ? _raw_read_unlock+0x20/0x40 [ 57.336906] ? start_this_handle+0x16c/0x500 [ 57.337162] ocfs2_xattr_block_set+0xa6/0x1e0 [ 57.337424] __ocfs2_xattr_set_handle+0x1fd/0x5d0 [ 57.337706] ? ocfs2_start_trans+0x13d/0x290 [ 57.337971] ocfs2_xattr_set+0xb13/0xfb0 [ 57.338207] ? dput+0x46/0x1c0 [ 57.338393] ocfs2_xattr_trusted_set+0x28/0x30 [ 57.338665] ? ocfs2_xattr_trusted_set+0x28/0x30 [ 57.338948] __vfs_removexattr+0x92/0xc0 [ 57.339182] __vfs_removexattr_locked+0xd5/0x190 [ 57.339456] ? preempt_count_sub+0x50/0x80 [ 57.339705] vfs_removexattr+0x5f/0x100 [...] Reproducer uses faultinject facility to fail ocfs2_xa_remove() -> ocfs2_xa_value_truncate() with -ENOMEM. In this case the comment mentions that we can return 0 if ocfs2_xa_cleanup_value_truncate() is going to wipe the entry anyway. But the following 'rc' check is wrong and execution flow do 'ocfs2_xa_remove_entry(loc);' twice: * 1st: in ocfs2_xa_cleanup_value_truncate(); * 2nd: returning back to ocfs2_xa_remove() instead of going to 'out'. Fix this by skipping the 2nd removal of the same entry and making syzkaller repro happy.
CVE-2024-50256 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_reject_ipv6: fix potential crash in nf_send_reset6() I got a syzbot report without a repro [1] crashing in nf_send_reset6() I think the issue is that dev->hard_header_len is zero, and we attempt later to push an Ethernet header. Use LL_MAX_HEADER, as other functions in net/ipv6/netfilter/nf_reject_ipv6.c. [1] skbuff: skb_under_panic: text:ffffffff89b1d008 len:74 put:14 head:ffff88803123aa00 data:ffff88803123a9f2 tail:0x3c end:0x140 dev:syz_tun kernel BUG at net/core/skbuff.c:206 ! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 UID: 0 PID: 7373 Comm: syz.1.568 Not tainted 6.12.0-rc2-syzkaller-00631-g6d858708d465 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:skb_panic net/core/skbuff.c:206 [inline] RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216 Code: 0d 8d 48 c7 c6 60 a6 29 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 ba 30 38 02 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 RSP: 0018:ffffc900045269b0 EFLAGS: 00010282 RAX: 0000000000000088 RBX: dffffc0000000000 RCX: cd66dacdc5d8e800 RDX: 0000000000000000 RSI: 0000000000000200 RDI: 0000000000000000 RBP: ffff88802d39a3d0 R08: ffffffff8174afec R09: 1ffff920008a4ccc R10: dffffc0000000000 R11: fffff520008a4ccd R12: 0000000000000140 R13: ffff88803123aa00 R14: ffff88803123a9f2 R15: 000000000000003c FS: 00007fdbee5ff6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000005d322000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> skb_push+0xe5/0x100 net/core/skbuff.c:2636 eth_header+0x38/0x1f0 net/ethernet/eth.c:83 dev_hard_header include/linux/netdevice.h:3208 [inline] nf_send_reset6+0xce6/0x1270 net/ipv6/netfilter/nf_reject_ipv6.c:358 nft_reject_inet_eval+0x3b9/0x690 net/netfilter/nft_reject_inet.c:48 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x4ad/0x1da0 net/netfilter/nf_tables_core.c:288 nft_do_chain_inet+0x418/0x6b0 net/netfilter/nft_chain_filter.c:161 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xc3/0x220 net/netfilter/core.c:626 nf_hook include/linux/netfilter.h:269 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] br_nf_pre_routing_ipv6+0x63e/0x770 net/bridge/br_netfilter_ipv6.c:184 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_bridge_pre net/bridge/br_input.c:277 [inline] br_handle_frame+0x9fd/0x1530 net/bridge/br_input.c:424 __netif_receive_skb_core+0x13e8/0x4570 net/core/dev.c:5562 __netif_receive_skb_one_core net/core/dev.c:5666 [inline] __netif_receive_skb+0x12f/0x650 net/core/dev.c:5781 netif_receive_skb_internal net/core/dev.c:5867 [inline] netif_receive_skb+0x1e8/0x890 net/core/dev.c:5926 tun_rx_batched+0x1b7/0x8f0 drivers/net/tun.c:1550 tun_get_user+0x3056/0x47e0 drivers/net/tun.c:2007 tun_chr_write_iter+0x10d/0x1f0 drivers/net/tun.c:2053 new_sync_write fs/read_write.c:590 [inline] vfs_write+0xa6d/0xc90 fs/read_write.c:683 ksys_write+0x183/0x2b0 fs/read_write.c:736 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fdbeeb7d1ff Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 c9 8d 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 1c 8e 02 00 48 RSP: 002b:00007fdbee5ff000 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007fdbeed36058 RCX: 00007fdbeeb7d1ff RDX: 000000000000008e RSI: 0000000020000040 RDI: 00000000000000c8 RBP: 00007fdbeebf12be R08: 0000000 ---truncated---
CVE-2024-50255 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci: fix null-ptr-deref in hci_read_supported_codecs Fix __hci_cmd_sync_sk() to return not NULL for unknown opcodes. __hci_cmd_sync_sk() returns NULL if a command returns a status event. However, it also returns NULL where an opcode doesn't exist in the hci_cc table because hci_cmd_complete_evt() assumes status = skb->data[0] for unknown opcodes. This leads to null-ptr-deref in cmd_sync for HCI_OP_READ_LOCAL_CODECS as there is no hci_cc for HCI_OP_READ_LOCAL_CODECS, which always assumes status = skb->data[0]. KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077] CPU: 1 PID: 2000 Comm: kworker/u9:5 Not tainted 6.9.0-ga6bcb805883c-dirty #10 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci7 hci_power_on RIP: 0010:hci_read_supported_codecs+0xb9/0x870 net/bluetooth/hci_codec.c:138 Code: 08 48 89 ef e8 b8 c1 8f fd 48 8b 75 00 e9 96 00 00 00 49 89 c6 48 ba 00 00 00 00 00 fc ff df 4c 8d 60 70 4c 89 e3 48 c1 eb 03 <0f> b6 04 13 84 c0 0f 85 82 06 00 00 41 83 3c 24 02 77 0a e8 bf 78 RSP: 0018:ffff888120bafac8 EFLAGS: 00010212 RAX: 0000000000000000 RBX: 000000000000000e RCX: ffff8881173f0040 RDX: dffffc0000000000 RSI: ffffffffa58496c0 RDI: ffff88810b9ad1e4 RBP: ffff88810b9ac000 R08: ffffffffa77882a7 R09: 1ffffffff4ef1054 R10: dffffc0000000000 R11: fffffbfff4ef1055 R12: 0000000000000070 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88810b9ac000 FS: 0000000000000000(0000) GS:ffff8881f6c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6ddaa3439e CR3: 0000000139764003 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> hci_read_local_codecs_sync net/bluetooth/hci_sync.c:4546 [inline] hci_init_stage_sync net/bluetooth/hci_sync.c:3441 [inline] hci_init4_sync net/bluetooth/hci_sync.c:4706 [inline] hci_init_sync net/bluetooth/hci_sync.c:4742 [inline] hci_dev_init_sync net/bluetooth/hci_sync.c:4912 [inline] hci_dev_open_sync+0x19a9/0x2d30 net/bluetooth/hci_sync.c:4994 hci_dev_do_open net/bluetooth/hci_core.c:483 [inline] hci_power_on+0x11e/0x560 net/bluetooth/hci_core.c:1015 process_one_work kernel/workqueue.c:3267 [inline] process_scheduled_works+0x8ef/0x14f0 kernel/workqueue.c:3348 worker_thread+0x91f/0xe50 kernel/workqueue.c:3429 kthread+0x2cb/0x360 kernel/kthread.c:388 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
CVE-2024-50198 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iio: light: veml6030: fix IIO device retrieval from embedded device The dev pointer that is received as an argument in the in_illuminance_period_available_show function references the device embedded in the IIO device, not in the i2c client. dev_to_iio_dev() must be used to accessthe right data. The current implementation leads to a segmentation fault on every attempt to read the attribute because indio_dev gets a NULL assignment. This bug has been present since the first appearance of the driver, apparently since the last version (V6) before getting applied. A constant attribute was used until then, and the last modifications might have not been tested again.
CVE-2024-50160 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda/cs8409: Fix possible NULL dereference If snd_hda_gen_add_kctl fails to allocate memory and returns NULL, then NULL pointer dereference will occur in the next line. Since dolphin_fixups function is a hda_fixup function which is not supposed to return any errors, add simple check before dereference, ignore the fail. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-50156 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Avoid NULL dereference in msm_disp_state_print_regs() If the allocation in msm_disp_state_dump_regs() failed then `block->state` can be NULL. The msm_disp_state_print_regs() function _does_ have code to try to handle it with: if (*reg) dump_addr = *reg; ...but since "dump_addr" is initialized to NULL the above is actually a noop. The code then goes on to dereference `dump_addr`. Make the function print "Registers not stored" when it sees a NULL to solve this. Since we're touching the code, fix msm_disp_state_print_regs() not to pointlessly take a double-pointer and properly mark the pointer as `const`. Patchwork: https://patchwork.freedesktop.org/patch/619657/
CVE-2024-50153 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: target: core: Fix null-ptr-deref in target_alloc_device() There is a null-ptr-deref issue reported by KASAN: BUG: KASAN: null-ptr-deref in target_alloc_device+0xbc4/0xbe0 [target_core_mod] ... kasan_report+0xb9/0xf0 target_alloc_device+0xbc4/0xbe0 [target_core_mod] core_dev_setup_virtual_lun0+0xef/0x1f0 [target_core_mod] target_core_init_configfs+0x205/0x420 [target_core_mod] do_one_initcall+0xdd/0x4e0 ... entry_SYSCALL_64_after_hwframe+0x76/0x7e In target_alloc_device(), if allocing memory for dev queues fails, then dev will be freed by dev->transport->free_device(), but dev->transport is not initialized at that time, which will lead to a null pointer reference problem. Fixing this bug by freeing dev with hba->backend->ops->free_device().
CVE-2024-50147 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix command bitmask initialization Command bitmask have a dedicated bit for MANAGE_PAGES command, this bit isn't Initialize during command bitmask Initialization, only during MANAGE_PAGES. In addition, mlx5_cmd_trigger_completions() is trying to trigger completion for MANAGE_PAGES command as well. Hence, in case health error occurred before any MANAGE_PAGES command have been invoke (for example, during mlx5_enable_hca()), mlx5_cmd_trigger_completions() will try to trigger completion for MANAGE_PAGES command, which will result in null-ptr-deref error.[1] Fix it by Initialize command bitmask correctly. While at it, re-write the code for better understanding. [1] BUG: KASAN: null-ptr-deref in mlx5_cmd_trigger_completions+0x1db/0x600 [mlx5_core] Write of size 4 at addr 0000000000000214 by task kworker/u96:2/12078 CPU: 10 PID: 12078 Comm: kworker/u96:2 Not tainted 6.9.0-rc2_for_upstream_debug_2024_04_07_19_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5_health0000:08:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core] Call Trace: <TASK> dump_stack_lvl+0x7e/0xc0 kasan_report+0xb9/0xf0 kasan_check_range+0xec/0x190 mlx5_cmd_trigger_completions+0x1db/0x600 [mlx5_core] mlx5_cmd_flush+0x94/0x240 [mlx5_core] enter_error_state+0x6c/0xd0 [mlx5_core] mlx5_fw_fatal_reporter_err_work+0xf3/0x480 [mlx5_core] process_one_work+0x787/0x1490 ? lockdep_hardirqs_on_prepare+0x400/0x400 ? pwq_dec_nr_in_flight+0xda0/0xda0 ? assign_work+0x168/0x240 worker_thread+0x586/0xd30 ? rescuer_thread+0xae0/0xae0 kthread+0x2df/0x3b0 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x2d/0x70 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork_asm+0x11/0x20 </TASK>
CVE-2024-50145 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: octeon_ep: Add SKB allocation failures handling in __octep_oq_process_rx() build_skb() returns NULL in case of a memory allocation failure so handle it inside __octep_oq_process_rx() to avoid NULL pointer dereference. __octep_oq_process_rx() is called during NAPI polling by the driver. If skb allocation fails, keep on pulling packets out of the Rx DMA queue: we shouldn't break the polling immediately and thus falsely indicate to the octep_napi_poll() that the Rx pressure is going down. As there is no associated skb in this case, don't process the packets and don't push them up the network stack - they are skipped. Helper function is implemented to unmmap/flush all the fragment buffers used by the dropped packet. 'alloc_failures' counter is incremented to mark the skb allocation error in driver statistics. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-50133 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Don't crash in stack_top() for tasks without vDSO Not all tasks have a vDSO mapped, for example kthreads never do. If such a task ever ends up calling stack_top(), it will derefence the NULL vdso pointer and crash. This can for example happen when using kunit: [<9000000000203874>] stack_top+0x58/0xa8 [<90000000002956cc>] arch_pick_mmap_layout+0x164/0x220 [<90000000003c284c>] kunit_vm_mmap_init+0x108/0x12c [<90000000003c1fbc>] __kunit_add_resource+0x38/0x8c [<90000000003c2704>] kunit_vm_mmap+0x88/0xc8 [<9000000000410b14>] usercopy_test_init+0xbc/0x25c [<90000000003c1db4>] kunit_try_run_case+0x5c/0x184 [<90000000003c3d54>] kunit_generic_run_threadfn_adapter+0x24/0x48 [<900000000022e4bc>] kthread+0xc8/0xd4 [<9000000000200ce8>] ret_from_kernel_thread+0xc/0xa4
CVE-2024-50117 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd: Guard against bad data for ATIF ACPI method If a BIOS provides bad data in response to an ATIF method call this causes a NULL pointer dereference in the caller. ``` ? show_regs (arch/x86/kernel/dumpstack.c:478 (discriminator 1)) ? __die (arch/x86/kernel/dumpstack.c:423 arch/x86/kernel/dumpstack.c:434) ? page_fault_oops (arch/x86/mm/fault.c:544 (discriminator 2) arch/x86/mm/fault.c:705 (discriminator 2)) ? do_user_addr_fault (arch/x86/mm/fault.c:440 (discriminator 1) arch/x86/mm/fault.c:1232 (discriminator 1)) ? acpi_ut_update_object_reference (drivers/acpi/acpica/utdelete.c:642) ? exc_page_fault (arch/x86/mm/fault.c:1542) ? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:623) ? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:387 (discriminator 2)) amdgpu ? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:386 (discriminator 1)) amdgpu ``` It has been encountered on at least one system, so guard for it. (cherry picked from commit c9b7c809b89f24e9372a4e7f02d64c950b07fdee)
CVE-2024-50103 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Fix NULL Dereference in asoc_qcom_lpass_cpu_platform_probe() A devm_kzalloc() in asoc_qcom_lpass_cpu_platform_probe() could possibly return NULL pointer. NULL Pointer Dereference may be triggerred without addtional check. Add a NULL check for the returned pointer.
CVE-2024-50069 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pinctrl: apple: check devm_kasprintf() returned value devm_kasprintf() can return a NULL pointer on failure but this returned value is not checked. Fix this lack and check the returned value. Found by code review.
CVE-2024-50062 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/rtrs-srv: Avoid null pointer deref during path establishment For RTRS path establishment, RTRS client initiates and completes con_num of connections. After establishing all its connections, the information is exchanged between the client and server through the info_req message. During this exchange, it is essential that all connections have been established, and the state of the RTRS srv path is CONNECTED. So add these sanity checks, to make sure we detect and abort process in error scenarios to avoid null pointer deref.
CVE-2024-50058 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: serial: protect uart_port_dtr_rts() in uart_shutdown() too Commit af224ca2df29 (serial: core: Prevent unsafe uart port access, part 3) added few uport == NULL checks. It added one to uart_shutdown(), so the commit assumes, uport can be NULL in there. But right after that protection, there is an unprotected "uart_port_dtr_rts(uport, false);" call. That is invoked only if HUPCL is set, so I assume that is the reason why we do not see lots of these reports. Or it cannot be NULL at this point at all for some reason :P. Until the above is investigated, stay on the safe side and move this dereference to the if too. I got this inconsistency from Coverity under CID 1585130. Thanks.
CVE-2024-50049 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointer before dereferencing se [WHAT & HOW] se is null checked previously in the same function, indicating it might be null; therefore, it must be checked when used again. This fixes 1 FORWARD_NULL issue reported by Coverity.
CVE-2024-50048 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fbcon: Fix a NULL pointer dereference issue in fbcon_putcs syzbot has found a NULL pointer dereference bug in fbcon. Here is the simplified C reproducer: struct param { uint8_t type; struct tiocl_selection ts; }; int main() { struct fb_con2fbmap con2fb; struct param param; int fd = open("/dev/fb1", 0, 0); con2fb.console = 0x19; con2fb.framebuffer = 0; ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb); param.type = 2; param.ts.xs = 0; param.ts.ys = 0; param.ts.xe = 0; param.ts.ye = 0; param.ts.sel_mode = 0; int fd1 = open("/dev/tty1", O_RDWR, 0); ioctl(fd1, TIOCLINUX, &param); con2fb.console = 1; con2fb.framebuffer = 0; ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb); return 0; } After calling ioctl(fd1, TIOCLINUX, &param), the subsequent ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb) causes the kernel to follow a different execution path: set_con2fb_map -> con2fb_init_display -> fbcon_set_disp -> redraw_screen -> hide_cursor -> clear_selection -> highlight -> invert_screen -> do_update_region -> fbcon_putcs -> ops->putcs Since ops->putcs is a NULL pointer, this leads to a kernel panic. To prevent this, we need to call set_blitting_type() within set_con2fb_map() to properly initialize ops->putcs.