CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Type confusion in V8 in Google Chrome prior to 116.0.5845.96 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
Type Confusion in V8 in Google Chrome prior to 114.0.5735.198 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
Type confusion in V8 in Google Chrome prior to 114.0.5735.133 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
Type Confusion in V8 in Google Chrome prior to 114.0.5735.90 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
Type Confusion in V8 in Google Chrome prior to 114.0.5735.90 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
Type confusion in V8 in Google Chrome prior to 113.0.5672.126 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
A flaw was found in the Linux Kernel in RDS (Reliable Datagram Sockets) protocol. The rds_rm_zerocopy_callback() uses list_entry() on the head of a list causing a type confusion. Local user can trigger this with rds_message_put(). Type confusion leads to `struct rds_msg_zcopy_info *info` actually points to something else that is potentially controlled by local user. It is known how to trigger this, which causes an out of bounds access, and a lock corruption. |
In the Linux kernel, the following vulnerability has been resolved:
net: mscc: ocelot: fix incorrect IFH SRC_PORT field in ocelot_ifh_set_basic()
Packets injected by the CPU should have a SRC_PORT field equal to the
CPU port module index in the Analyzer block (ocelot->num_phys_ports).
The blamed commit copied the ocelot_ifh_set_basic() call incorrectly
from ocelot_xmit_common() in net/dsa/tag_ocelot.c. Instead of calling
with "x", it calls with BIT_ULL(x), but the field is not a port mask,
but rather a single port index.
[ side note: this is the technical debt of code duplication :( ]
The error used to be silent and doesn't appear to have other
user-visible manifestations, but with new changes in the packing
library, it now fails loudly as follows:
------------[ cut here ]------------
Cannot store 0x40 inside bits 46-43 - will truncate
sja1105 spi2.0: xmit timed out
WARNING: CPU: 1 PID: 102 at lib/packing.c:98 __pack+0x90/0x198
sja1105 spi2.0: timed out polling for tstamp
CPU: 1 UID: 0 PID: 102 Comm: felix_xmit
Tainted: G W N 6.13.0-rc1-00372-gf706b85d972d-dirty #2605
Call trace:
__pack+0x90/0x198 (P)
__pack+0x90/0x198 (L)
packing+0x78/0x98
ocelot_ifh_set_basic+0x260/0x368
ocelot_port_inject_frame+0xa8/0x250
felix_port_deferred_xmit+0x14c/0x258
kthread_worker_fn+0x134/0x350
kthread+0x114/0x138
The code path pertains to the ocelot switchdev driver and to the felix
secondary DSA tag protocol, ocelot-8021q. Here seen with ocelot-8021q.
The messenger (packing) is not really to blame, so fix the original
commit instead. |
In the Linux kernel, the following vulnerability has been resolved:
gpio: graniterapids: Fix vGPIO driver crash
Move setting irq_chip.name from probe() function to the initialization
of "irq_chip" struct in order to fix vGPIO driver crash during bootup.
Crash was caused by unauthorized modification of irq_chip.name field
where irq_chip struct was initialized as const.
This behavior is a consequence of suboptimal implementation of
gpio_irq_chip_set_chip(), which should be changed to avoid
casting away const qualifier.
Crash log:
BUG: unable to handle page fault for address: ffffffffc0ba81c0
/#PF: supervisor write access in kernel mode
/#PF: error_code(0x0003) - permissions violation
CPU: 33 UID: 0 PID: 1075 Comm: systemd-udevd Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7 #1
Hardware name: Intel Corporation Kaseyville RP/Kaseyville RP, BIOS KVLDCRB1.PGS.0026.D73.2410081258 10/08/2024
RIP: 0010:gnr_gpio_probe+0x171/0x220 [gpio_graniterapids] |
In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix aggregation ID mask to prevent oops on 5760X chips
The 5760X (P7) chip's HW GRO/LRO interface is very similar to that of
the previous generation (5750X or P5). However, the aggregation ID
fields in the completion structures on P7 have been redefined from
16 bits to 12 bits. The freed up 4 bits are redefined for part of the
metadata such as the VLAN ID. The aggregation ID mask was not modified
when adding support for P7 chips. Including the extra 4 bits for the
aggregation ID can potentially cause the driver to store or fetch the
packet header of GRO/LRO packets in the wrong TPA buffer. It may hit
the BUG() condition in __skb_pull() because the SKB contains no valid
packet header:
kernel BUG at include/linux/skbuff.h:2766!
Oops: invalid opcode: 0000 1 PREEMPT SMP NOPTI
CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Kdump: loaded Tainted: G OE 6.12.0-rc2+ #7
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: Dell Inc. PowerEdge R760/0VRV9X, BIOS 1.0.1 12/27/2022
RIP: 0010:eth_type_trans+0xda/0x140
Code: 80 00 00 00 eb c1 8b 47 70 2b 47 74 48 8b 97 d0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb a5 <0f> 0b b8 00 01 00 00 eb 9c 48 85 ff 74 eb 31 f6 b9 02 00 00 00 48
RSP: 0018:ff615003803fcc28 EFLAGS: 00010283
RAX: 00000000000022d2 RBX: 0000000000000003 RCX: ff2e8c25da334040
RDX: 0000000000000040 RSI: ff2e8c25c1ce8000 RDI: ff2e8c25869f9000
RBP: ff2e8c258c31c000 R08: ff2e8c25da334000 R09: 0000000000000001
R10: ff2e8c25da3342c0 R11: ff2e8c25c1ce89c0 R12: ff2e8c258e0990b0
R13: ff2e8c25bb120000 R14: ff2e8c25c1ce89c0 R15: ff2e8c25869f9000
FS: 0000000000000000(0000) GS:ff2e8c34be300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f05317e4c8 CR3: 000000108bac6006 CR4: 0000000000773ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
? die+0x33/0x90
? do_trap+0xd9/0x100
? eth_type_trans+0xda/0x140
? do_error_trap+0x65/0x80
? eth_type_trans+0xda/0x140
? exc_invalid_op+0x4e/0x70
? eth_type_trans+0xda/0x140
? asm_exc_invalid_op+0x16/0x20
? eth_type_trans+0xda/0x140
bnxt_tpa_end+0x10b/0x6b0 [bnxt_en]
? bnxt_tpa_start+0x195/0x320 [bnxt_en]
bnxt_rx_pkt+0x902/0xd90 [bnxt_en]
? __bnxt_tx_int.constprop.0+0x89/0x300 [bnxt_en]
? kmem_cache_free+0x343/0x440
? __bnxt_tx_int.constprop.0+0x24f/0x300 [bnxt_en]
__bnxt_poll_work+0x193/0x370 [bnxt_en]
bnxt_poll_p5+0x9a/0x300 [bnxt_en]
? try_to_wake_up+0x209/0x670
__napi_poll+0x29/0x1b0
Fix it by redefining the aggregation ID mask for P5_PLUS chips to be
12 bits. This will work because the maximum aggregation ID is less
than 4096 on all P5_PLUS chips. |
In the Linux kernel, the following vulnerability has been resolved:
sched/task_stack: fix object_is_on_stack() for KASAN tagged pointers
When CONFIG_KASAN_SW_TAGS and CONFIG_KASAN_STACK are enabled, the
object_is_on_stack() function may produce incorrect results due to the
presence of tags in the obj pointer, while the stack pointer does not have
tags. This discrepancy can lead to incorrect stack object detection and
subsequently trigger warnings if CONFIG_DEBUG_OBJECTS is also enabled.
Example of the warning:
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1 at lib/debugobjects.c:557 __debug_object_init+0x330/0x364
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5 #4
Hardware name: linux,dummy-virt (DT)
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __debug_object_init+0x330/0x364
lr : __debug_object_init+0x330/0x364
sp : ffff800082ea7b40
x29: ffff800082ea7b40 x28: 98ff0000c0164518 x27: 98ff0000c0164534
x26: ffff800082d93ec8 x25: 0000000000000001 x24: 1cff0000c00172a0
x23: 0000000000000000 x22: ffff800082d93ed0 x21: ffff800081a24418
x20: 3eff800082ea7bb0 x19: efff800000000000 x18: 0000000000000000
x17: 00000000000000ff x16: 0000000000000047 x15: 206b63617473206e
x14: 0000000000000018 x13: ffff800082ea7780 x12: 0ffff800082ea78e
x11: 0ffff800082ea790 x10: 0ffff800082ea79d x9 : 34d77febe173e800
x8 : 34d77febe173e800 x7 : 0000000000000001 x6 : 0000000000000001
x5 : feff800082ea74b8 x4 : ffff800082870a90 x3 : ffff80008018d3c4
x2 : 0000000000000001 x1 : ffff800082858810 x0 : 0000000000000050
Call trace:
__debug_object_init+0x330/0x364
debug_object_init_on_stack+0x30/0x3c
schedule_hrtimeout_range_clock+0xac/0x26c
schedule_hrtimeout+0x1c/0x30
wait_task_inactive+0x1d4/0x25c
kthread_bind_mask+0x28/0x98
init_rescuer+0x1e8/0x280
workqueue_init+0x1a0/0x3cc
kernel_init_freeable+0x118/0x200
kernel_init+0x28/0x1f0
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------ |
In the Linux kernel, the following vulnerability has been resolved:
media: qcom: camss: Remove use_count guard in stop_streaming
The use_count check was introduced so that multiple concurrent Raw Data
Interfaces RDIs could be driven by different virtual channels VCs on the
CSIPHY input driving the video pipeline.
This is an invalid use of use_count though as use_count pertains to the
number of times a video entity has been opened by user-space not the number
of active streams.
If use_count and stream-on count don't agree then stop_streaming() will
break as is currently the case and has become apparent when using CAMSS
with libcamera's released softisp 0.3.
The use of use_count like this is a bit hacky and right now breaks regular
usage of CAMSS for a single stream case. Stopping qcam results in the splat
below, and then it cannot be started again and any attempts to do so fails
with -EBUSY.
[ 1265.509831] WARNING: CPU: 5 PID: 919 at drivers/media/common/videobuf2/videobuf2-core.c:2183 __vb2_queue_cancel+0x230/0x2c8 [videobuf2_common]
...
[ 1265.510630] Call trace:
[ 1265.510636] __vb2_queue_cancel+0x230/0x2c8 [videobuf2_common]
[ 1265.510648] vb2_core_streamoff+0x24/0xcc [videobuf2_common]
[ 1265.510660] vb2_ioctl_streamoff+0x5c/0xa8 [videobuf2_v4l2]
[ 1265.510673] v4l_streamoff+0x24/0x30 [videodev]
[ 1265.510707] __video_do_ioctl+0x190/0x3f4 [videodev]
[ 1265.510732] video_usercopy+0x304/0x8c4 [videodev]
[ 1265.510757] video_ioctl2+0x18/0x34 [videodev]
[ 1265.510782] v4l2_ioctl+0x40/0x60 [videodev]
...
[ 1265.510944] videobuf2_common: driver bug: stop_streaming operation is leaving buffer 0 in active state
[ 1265.511175] videobuf2_common: driver bug: stop_streaming operation is leaving buffer 1 in active state
[ 1265.511398] videobuf2_common: driver bug: stop_streaming operation is leaving buffer 2 in active st
One CAMSS specific way to handle multiple VCs on the same RDI might be:
- Reference count each pipeline enable for CSIPHY, CSID, VFE and RDIx.
- The video buffers are already associated with msm_vfeN_rdiX so
release video buffers when told to do so by stop_streaming.
- Only release the power-domains for the CSIPHY, CSID and VFE when
their internal refcounts drop.
Either way refusing to release video buffers based on use_count is
erroneous and should be reverted. The silicon enabling code for selecting
VCs is perfectly fine. Its a "known missing feature" that concurrent VCs
won't work with CAMSS right now.
Initial testing with this code didn't show an error but, SoftISP and "real"
usage with Google Hangouts breaks the upstream code pretty quickly, we need
to do a partial revert and take another pass at VCs.
This commit partially reverts commit 89013969e232 ("media: camss: sm8250:
Pipeline starting and stopping for multiple virtual channels") |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Prevent tail call between progs attached to different hooks
bpf progs can be attached to kernel functions, and the attached functions
can take different parameters or return different return values. If
prog attached to one kernel function tail calls prog attached to another
kernel function, the ctx access or return value verification could be
bypassed.
For example, if prog1 is attached to func1 which takes only 1 parameter
and prog2 is attached to func2 which takes two parameters. Since verifier
assumes the bpf ctx passed to prog2 is constructed based on func2's
prototype, verifier allows prog2 to access the second parameter from
the bpf ctx passed to it. The problem is that verifier does not prevent
prog1 from passing its bpf ctx to prog2 via tail call. In this case,
the bpf ctx passed to prog2 is constructed from func1 instead of func2,
that is, the assumption for ctx access verification is bypassed.
Another example, if BPF LSM prog1 is attached to hook file_alloc_security,
and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier
knows the return value rules for these two hooks, e.g. it is legal for
bpf_lsm_audit_rule_known to return positive number 1, and it is illegal
for file_alloc_security to return positive number. So verifier allows
prog2 to return positive number 1, but does not allow prog1 to return
positive number. The problem is that verifier does not prevent prog1
from calling prog2 via tail call. In this case, prog2's return value 1
will be used as the return value for prog1's hook file_alloc_security.
That is, the return value rule is bypassed.
This patch adds restriction for tail call to prevent such bypasses. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: sysfs: validate return type of _STR method
Only buffer objects are valid return values of _STR.
If something else is returned description_show() will access invalid
memory. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: seq: Fix function prototype mismatch in snd_seq_expand_var_event
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed.
seq_copy_in_user() and seq_copy_in_kernel() did not have prototypes
matching snd_seq_dump_func_t. Adjust this and remove the casts. There
are not resulting binary output differences.
This was found as a result of Clang's new -Wcast-function-type-strict
flag, which is more sensitive than the simpler -Wcast-function-type,
which only checks for type width mismatches. |
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Ensure shadow stack is active before "getting" registers
The x86 shadow stack support has its own set of registers. Those registers
are XSAVE-managed, but they are "supervisor state components" which means
that userspace can not touch them with XSAVE/XRSTOR. It also means that
they are not accessible from the existing ptrace ABI for XSAVE state.
Thus, there is a new ptrace get/set interface for it.
The regset code that ptrace uses provides an ->active() handler in
addition to the get/set ones. For shadow stack this ->active() handler
verifies that shadow stack is enabled via the ARCH_SHSTK_SHSTK bit in the
thread struct. The ->active() handler is checked from some call sites of
the regset get/set handlers, but not the ptrace ones. This was not
understood when shadow stack support was put in place.
As a result, both the set/get handlers can be called with
XFEATURE_CET_USER in its init state, which would cause get_xsave_addr() to
return NULL and trigger a WARN_ON(). The ssp_set() handler luckily has an
ssp_active() check to avoid surprising the kernel with shadow stack
behavior when the kernel is not ready for it (ARCH_SHSTK_SHSTK==0). That
check just happened to avoid the warning.
But the ->get() side wasn't so lucky. It can be called with shadow stacks
disabled, triggering the warning in practice, as reported by Christina
Schimpe:
WARNING: CPU: 5 PID: 1773 at arch/x86/kernel/fpu/regset.c:198 ssp_get+0x89/0xa0
[...]
Call Trace:
<TASK>
? show_regs+0x6e/0x80
? ssp_get+0x89/0xa0
? __warn+0x91/0x150
? ssp_get+0x89/0xa0
? report_bug+0x19d/0x1b0
? handle_bug+0x46/0x80
? exc_invalid_op+0x1d/0x80
? asm_exc_invalid_op+0x1f/0x30
? __pfx_ssp_get+0x10/0x10
? ssp_get+0x89/0xa0
? ssp_get+0x52/0xa0
__regset_get+0xad/0xf0
copy_regset_to_user+0x52/0xc0
ptrace_regset+0x119/0x140
ptrace_request+0x13c/0x850
? wait_task_inactive+0x142/0x1d0
? do_syscall_64+0x6d/0x90
arch_ptrace+0x102/0x300
[...]
Ensure that shadow stacks are active in a thread before looking them up
in the XSAVE buffer. Since ARCH_SHSTK_SHSTK and user_ssp[SHSTK_EN] are
set at the same time, the active check ensures that there will be
something to find in the XSAVE buffer.
[ dhansen: changelog/subject tweaks ] |
Windows Online Certificate Status Protocol (OCSP) Information Disclosure Vulnerability |
Windows Pragmatic General Multicast (PGM) Remote Code Execution Vulnerability |
Microsoft Message Queuing (MSMQ) Remote Code Execution Vulnerability |
Remote Procedure Call Runtime Remote Code Execution Vulnerability |