CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The module will parse a <pattern> node which is not a child of a structural node. The node will be deleted after creation but might be accessed later leading to a use after free. |
The endpoint POST /api/staff/get-new-tickets concatenates the user-controlled parameter departmentId directly into the SQL WHERE clause without parameter binding. As a result, an authenticated staff user (level ≥ 1) can inject SQL to alter the filter logic, effectively bypassing department scoping and disclosing tickets beyond their intended access.This issue affects OpenSupports: 4.11.0. |
In the Linux kernel, the following vulnerability has been resolved:
net: enetc: avoid buffer leaks on xdp_do_redirect() failure
Before enetc_clean_rx_ring_xdp() calls xdp_do_redirect(), each software
BD in the RX ring between index orig_i and i can have one of 2 refcount
values on its page.
We are the owner of the current buffer that is being processed, so the
refcount will be at least 1.
If the current owner of the buffer at the diametrically opposed index
in the RX ring (i.o.w, the other half of this page) has not yet called
kfree(), this page's refcount could even be 2.
enetc_page_reusable() in enetc_flip_rx_buff() tests for the page
refcount against 1, and [ if it's 2 ] does not attempt to reuse it.
But if enetc_flip_rx_buff() is put after the xdp_do_redirect() call,
the page refcount can have one of 3 values. It can also be 0, if there
is no owner of the other page half, and xdp_do_redirect() for this
buffer ran so far that it triggered a flush of the devmap/cpumap bulk
queue, and the consumers of those bulk queues also freed the buffer,
all by the time xdp_do_redirect() returns the execution back to enetc.
This is the reason why enetc_flip_rx_buff() is called before
xdp_do_redirect(), but there is a big flaw with that reasoning:
enetc_flip_rx_buff() will set rx_swbd->page = NULL on both sides of the
enetc_page_reusable() branch, and if xdp_do_redirect() returns an error,
we call enetc_xdp_free(), which does not deal gracefully with that.
In fact, what happens is quite special. The page refcounts start as 1.
enetc_flip_rx_buff() figures they're reusable, transfers these
rx_swbd->page pointers to a different rx_swbd in enetc_reuse_page(), and
bumps the refcount to 2. When xdp_do_redirect() later returns an error,
we call the no-op enetc_xdp_free(), but we still haven't lost the
reference to that page. A copy of it is still at rx_ring->next_to_alloc,
but that has refcount 2 (and there are no concurrent owners of it in
flight, to drop the refcount). What really kills the system is when
we'll flip the rx_swbd->page the second time around. With an updated
refcount of 2, the page will not be reusable and we'll really leak it.
Then enetc_new_page() will have to allocate more pages, which will then
eventually leak again on further errors from xdp_do_redirect().
The problem, summarized, is that we zeroize rx_swbd->page before we're
completely done with it, and this makes it impossible for the error path
to do something with it.
Since the packet is potentially multi-buffer and therefore the
rx_swbd->page is potentially an array, manual passing of the old
pointers between enetc_flip_rx_buff() and enetc_xdp_free() is a bit
difficult.
For the sake of going with a simple solution, we accept the possibility
of racing with xdp_do_redirect(), and we move the flip procedure to
execute only on the redirect success path. By racing, I mean that the
page may be deemed as not reusable by enetc (having a refcount of 0),
but there will be no leak in that case, either.
Once we accept that, we have something better to do with buffers on
XDP_REDIRECT failure. Since we haven't performed half-page flipping yet,
we won't, either (and this way, we can avoid enetc_xdp_free()
completely, which gives the entire page to the slab allocator).
Instead, we'll call enetc_xdp_drop(), which will recycle this half of
the buffer back to the RX ring. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd: fix potential memory leak
This patch fix potential memory leak (clk_src) when function run
into last return NULL.
s/free/kfree/ - Alex |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Make sure "ib_port" is valid when access sysfs node
The "ib_port" structure must be set before adding the sysfs kobject,
and reset after removing it, otherwise it may crash when accessing
the sysfs node:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000050
Mem abort info:
ESR = 0x96000006
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000e85f5ba5
[0000000000000050] pgd=0000000848fd9003, pud=000000085b387003, pmd=0000000000000000
Internal error: Oops: 96000006 [#2] PREEMPT SMP
Modules linked in: ib_umad(O) mlx5_ib(O) nfnetlink_cttimeout(E) nfnetlink(E) act_gact(E) cls_flower(E) sch_ingress(E) openvswitch(E) nsh(E) nf_nat_ipv6(E) nf_nat_ipv4(E) nf_conncount(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) mst_pciconf(O) ipmi_devintf(E) ipmi_msghandler(E) ipmb_dev_int(OE) mlx5_core(O) mlxfw(O) mlxdevm(O) auxiliary(O) ib_uverbs(O) ib_core(O) mlx_compat(O) psample(E) sbsa_gwdt(E) uio_pdrv_genirq(E) uio(E) mlxbf_pmc(OE) mlxbf_gige(OE) mlxbf_tmfifo(OE) gpio_mlxbf2(OE) pwr_mlxbf(OE) mlx_trio(OE) i2c_mlxbf(OE) mlx_bootctl(OE) bluefield_edac(OE) knem(O) ip_tables(E) ipv6(E) crc_ccitt(E) [last unloaded: mst_pci]
Process grep (pid: 3372, stack limit = 0x0000000022055c92)
CPU: 5 PID: 3372 Comm: grep Tainted: G D OE 4.19.161-mlnx.47.gadcd9e3 #1
Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS BlueField:3.9.2-15-ga2403ab Sep 8 2022
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : hw_stat_port_show+0x4c/0x80 [ib_core]
lr : port_attr_show+0x40/0x58 [ib_core]
sp : ffff000029f43b50
x29: ffff000029f43b50 x28: 0000000019375000
x27: ffff8007b821a540 x26: ffff000029f43e30
x25: 0000000000008000 x24: ffff000000eaa958
x23: 0000000000001000 x22: ffff8007a4ce3000
x21: ffff8007baff8000 x20: ffff8007b9066ac0
x19: ffff8007bae97578 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000
x15: 0000000000000000 x14: 0000000000000000
x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000
x9 : 0000000000000000 x8 : ffff8007a4ce4000
x7 : 0000000000000000 x6 : 000000000000003f
x5 : ffff000000e6a280 x4 : ffff8007a4ce3000
x3 : 0000000000000000 x2 : aaaaaaaaaaaaaaab
x1 : ffff8007b9066a10 x0 : ffff8007baff8000
Call trace:
hw_stat_port_show+0x4c/0x80 [ib_core]
port_attr_show+0x40/0x58 [ib_core]
sysfs_kf_seq_show+0x8c/0x150
kernfs_seq_show+0x44/0x50
seq_read+0x1b4/0x45c
kernfs_fop_read+0x148/0x1d8
__vfs_read+0x58/0x180
vfs_read+0x94/0x154
ksys_read+0x68/0xd8
__arm64_sys_read+0x28/0x34
el0_svc_common+0x88/0x18c
el0_svc_handler+0x78/0x94
el0_svc+0x8/0xe8
Code: f2955562 aa1603e4 aa1503e0 f9405683 (f9402861) |
In the Linux kernel, the following vulnerability has been resolved:
xen/gntdev: Accommodate VMA splitting
Prior to this commit, the gntdev driver code did not handle the
following scenario correctly with paravirtualized (PV) Xen domains:
* User process sets up a gntdev mapping composed of two grant mappings
(i.e., two pages shared by another Xen domain).
* User process munmap()s one of the pages.
* User process munmap()s the remaining page.
* User process exits.
In the scenario above, the user process would cause the kernel to log
the following messages in dmesg for the first munmap(), and the second
munmap() call would result in similar log messages:
BUG: Bad page map in process doublemap.test pte:... pmd:...
page:0000000057c97bff refcount:1 mapcount:-1 \
mapping:0000000000000000 index:0x0 pfn:...
...
page dumped because: bad pte
...
file:gntdev fault:0x0 mmap:gntdev_mmap [xen_gntdev] readpage:0x0
...
Call Trace:
<TASK>
dump_stack_lvl+0x46/0x5e
print_bad_pte.cold+0x66/0xb6
unmap_page_range+0x7e5/0xdc0
unmap_vmas+0x78/0xf0
unmap_region+0xa8/0x110
__do_munmap+0x1ea/0x4e0
__vm_munmap+0x75/0x120
__x64_sys_munmap+0x28/0x40
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
...
For each munmap() call, the Xen hypervisor (if built with CONFIG_DEBUG)
would print out the following and trigger a general protection fault in
the affected Xen PV domain:
(XEN) d0v... Attempt to implicitly unmap d0's grant PTE ...
(XEN) d0v... Attempt to implicitly unmap d0's grant PTE ...
As of this writing, gntdev_grant_map structure's vma field (referred to
as map->vma below) is mainly used for checking the start and end
addresses of mappings. However, with split VMAs, these may change, and
there could be more than one VMA associated with a gntdev mapping.
Hence, remove the use of map->vma and rely on map->pages_vm_start for
the original start address and on (map->count << PAGE_SHIFT) for the
original mapping size. Let the invalidate() and find_special_page()
hooks use these.
Also, given that there can be multiple VMAs associated with a gntdev
mapping, move the "mmu_interval_notifier_remove(&map->notifier)" call to
the end of gntdev_put_map, so that the MMU notifier is only removed
after the closing of the last remaining VMA.
Finally, use an atomic to prevent inadvertent gntdev mapping re-use,
instead of using the map->live_grants atomic counter and/or the map->vma
pointer (the latter of which is now removed). This prevents the
userspace from mmap()'ing (with MAP_FIXED) a gntdev mapping over the
same address range as a previously set up gntdev mapping. This scenario
can be summarized with the following call-trace, which was valid prior
to this commit:
mmap
gntdev_mmap
mmap (repeat mmap with MAP_FIXED over the same address range)
gntdev_invalidate
unmap_grant_pages (sets 'being_removed' entries to true)
gnttab_unmap_refs_async
unmap_single_vma
gntdev_mmap (maps the shared pages again)
munmap
gntdev_invalidate
unmap_grant_pages
(no-op because 'being_removed' entries are true)
unmap_single_vma (For PV domains, Xen reports that a granted page
is being unmapped and triggers a general protection fault in the
affected domain, if Xen was built with CONFIG_DEBUG)
The fix for this last scenario could be worth its own commit, but we
opted for a single commit, because removing the gntdev_grant_map
structure's vma field requires guarding the entry to gntdev_mmap(), and
the live_grants atomic counter is not sufficient on its own to prevent
the mmap() over a pre-existing mapping. |
The GiveWP – Donation Plugin and Fundraising Platform plugin for WordPress is vulnerable to Information Exposure in all versions up to, and including, 4.10.0 via the 'registerGetForm', 'registerGetForms', 'registerGetCampaign' and 'registerGetCampaigns' functions due to a missing capability check. This makes it possible for unauthenticated attackers to extract data from private and draft donation forms, as well as archived campaigns. |
OpenPLC Runtime v3 contains an input validation flaw in the /upload-program-action endpoint: the epoch_time field supplied during program uploads is not validated and can be crafted to induce corruption of the programs database. After a successful malformed upload the runtime continues to operate until a restart; on restart the runtime can fail to start because of corrupted database entries, resulting in persistent denial of service requiring complete rebase of the product to recover. This vulnerability was remediated by commit 095ee09623dd229b64ad3a1db38a901a3772f6fc. |
A TCL Smart TV running a vulnerable UPnP/DLNA MediaRenderer implementation is affected by a remote, unauthenticated Denial of Service (DoS) condition. By sending a flood of malformed or oversized SetAVTransportURI SOAP requests to the UPnP control endpoint, an attacker can cause the device to become unresponsive. This denial persists as long as the attack continues and affects all forms of TV operation. Manual user control and even reboots do not restore functionality unless the flood stops. |
TCL 65C655 Smart TV, running firmware version V8-R75PT01-LF1V269.001116 (Android TV, Kernel 5.4.242+), is vulnerable to a blind, unauthenticated Server-Side Request Forgery (SSRF) vulnerability via the UPnP MediaRenderer service (AVTransport:1). The device accepts unauthenticated SetAVTransportURI SOAP requests over TCP/16398 and attempts to retrieve externally referenced URIs, including attacker-controlled payloads. The blind SSRF allows for sending requests on behalf of the TV, which can be leveraged to probe for other internal or external services accessible by the device (e.g., 127.0.0.1:16XXX, LAN services, or internet targets), potentially enabling additional exploit chains. |
A vulnerability in Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2025.Q1.0 through 2025.Q1.4, 2024.Q4.0 through 2024.Q4.5, 2024.Q3.0 through 2024.Q3.13, 2024.Q2.1 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.12, 2023.Q4.0 through 2023.Q4.10, 2023.Q3.1 through 2023.Q3.10, and 7.4 GA through update 92 allows sensitive user data to be included in the Freemarker template. This weakness permits an unauthorized actor to gain access to, and potentially render, confidential information that should remain restricted. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - Set merge to zero early in af_alg_sendmsg
If an error causes af_alg_sendmsg to abort, ctx->merge may contain
a garbage value from the previous loop. This may then trigger a
crash on the next entry into af_alg_sendmsg when it attempts to do
a merge that can't be done.
Fix this by setting ctx->merge to zero near the start of the loop. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codec: sma1307: Fix memory corruption in sma1307_setting_loaded()
The sma1307->set.header_size is how many integers are in the header
(there are 8 of them) but instead of allocating space of 8 integers
we allocate 8 bytes. This leads to memory corruption when we copy data
it on the next line:
memcpy(sma1307->set.header, data,
sma1307->set.header_size * sizeof(int));
Also since we're immediately copying over the memory in ->set.header,
there is no need to zero it in the allocator. Use devm_kmalloc_array()
to allocate the memory instead. |
In the Linux kernel, the following vulnerability has been resolved:
tls: make sure to abort the stream if headers are bogus
Normally we wait for the socket to buffer up the whole record
before we service it. If the socket has a tiny buffer, however,
we read out the data sooner, to prevent connection stalls.
Make sure that we abort the connection when we find out late
that the record is actually invalid. Retrying the parsing is
fine in itself but since we copy some more data each time
before we parse we can overflow the allocated skb space.
Constructing a scenario in which we're under pressure without
enough data in the socket to parse the length upfront is quite
hard. syzbot figured out a way to do this by serving us the header
in small OOB sends, and then filling in the recvbuf with a large
normal send.
Make sure that tls_rx_msg_size() aborts strp, if we reach
an invalid record there's really no way to recover. |
In the Linux kernel, the following vulnerability has been resolved:
um: virtio_uml: Fix use-after-free after put_device in probe
When register_virtio_device() fails in virtio_uml_probe(),
the code sets vu_dev->registered = 1 even though
the device was not successfully registered.
This can lead to use-after-free or other issues. |
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix use-after-free bugs in otx2_sync_tstamp()
The original code relies on cancel_delayed_work() in otx2_ptp_destroy(),
which does not ensure that the delayed work item synctstamp_work has fully
completed if it was already running. This leads to use-after-free scenarios
where otx2_ptp is deallocated by otx2_ptp_destroy(), while synctstamp_work
remains active and attempts to dereference otx2_ptp in otx2_sync_tstamp().
Furthermore, the synctstamp_work is cyclic, the likelihood of triggering
the bug is nonnegligible.
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
otx2_remove() |
otx2_ptp_destroy() | otx2_sync_tstamp()
cancel_delayed_work() |
kfree(ptp) |
| ptp = container_of(...); //UAF
| ptp-> //UAF
This is confirmed by a KASAN report:
BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0
Write of size 8 at addr ffff88800aa09a18 by task bash/136
...
Call Trace:
<IRQ>
dump_stack_lvl+0x55/0x70
print_report+0xcf/0x610
? __run_timer_base.part.0+0x7d7/0x8c0
kasan_report+0xb8/0xf0
? __run_timer_base.part.0+0x7d7/0x8c0
__run_timer_base.part.0+0x7d7/0x8c0
? __pfx___run_timer_base.part.0+0x10/0x10
? __pfx_read_tsc+0x10/0x10
? ktime_get+0x60/0x140
? lapic_next_event+0x11/0x20
? clockevents_program_event+0x1d4/0x2a0
run_timer_softirq+0xd1/0x190
handle_softirqs+0x16a/0x550
irq_exit_rcu+0xaf/0xe0
sysvec_apic_timer_interrupt+0x70/0x80
</IRQ>
...
Allocated by task 1:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
otx2_ptp_init+0xb1/0x860
otx2_probe+0x4eb/0xc30
local_pci_probe+0xdc/0x190
pci_device_probe+0x2fe/0x470
really_probe+0x1ca/0x5c0
__driver_probe_device+0x248/0x310
driver_probe_device+0x44/0x120
__driver_attach+0xd2/0x310
bus_for_each_dev+0xed/0x170
bus_add_driver+0x208/0x500
driver_register+0x132/0x460
do_one_initcall+0x89/0x300
kernel_init_freeable+0x40d/0x720
kernel_init+0x1a/0x150
ret_from_fork+0x10c/0x1a0
ret_from_fork_asm+0x1a/0x30
Freed by task 136:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x3f/0x50
kfree+0x137/0x370
otx2_ptp_destroy+0x38/0x80
otx2_remove+0x10d/0x4c0
pci_device_remove+0xa6/0x1d0
device_release_driver_internal+0xf8/0x210
pci_stop_bus_device+0x105/0x150
pci_stop_and_remove_bus_device_locked+0x15/0x30
remove_store+0xcc/0xe0
kernfs_fop_write_iter+0x2c3/0x440
vfs_write+0x871/0xd70
ksys_write+0xee/0x1c0
do_syscall_64+0xac/0x280
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the delayed work item is properly canceled before the otx2_ptp is
deallocated.
This bug was initially identified through static analysis. To reproduce
and test it, I simulated the OcteonTX2 PCI device in QEMU and introduced
artificial delays within the otx2_sync_tstamp() function to increase the
likelihood of triggering the bug. |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix Rx page leak on multi-buffer frames
The ice_put_rx_mbuf() function handles calling ice_put_rx_buf() for each
buffer in the current frame. This function was introduced as part of
handling multi-buffer XDP support in the ice driver.
It works by iterating over the buffers from first_desc up to 1 plus the
total number of fragments in the frame, cached from before the XDP program
was executed.
If the hardware posts a descriptor with a size of 0, the logic used in
ice_put_rx_mbuf() breaks. Such descriptors get skipped and don't get added
as fragments in ice_add_xdp_frag. Since the buffer isn't counted as a
fragment, we do not iterate over it in ice_put_rx_mbuf(), and thus we don't
call ice_put_rx_buf().
Because we don't call ice_put_rx_buf(), we don't attempt to re-use the
page or free it. This leaves a stale page in the ring, as we don't
increment next_to_alloc.
The ice_reuse_rx_page() assumes that the next_to_alloc has been incremented
properly, and that it always points to a buffer with a NULL page. Since
this function doesn't check, it will happily recycle a page over the top
of the next_to_alloc buffer, losing track of the old page.
Note that this leak only occurs for multi-buffer frames. The
ice_put_rx_mbuf() function always handles at least one buffer, so a
single-buffer frame will always get handled correctly. It is not clear
precisely why the hardware hands us descriptors with a size of 0 sometimes,
but it happens somewhat regularly with "jumbo frames" used by 9K MTU.
To fix ice_put_rx_mbuf(), we need to make sure to call ice_put_rx_buf() on
all buffers between first_desc and next_to_clean. Borrow the logic of a
similar function in i40e used for this same purpose. Use the same logic
also in ice_get_pgcnts().
Instead of iterating over just the number of fragments, use a loop which
iterates until the current index reaches to the next_to_clean element just
past the current frame. Unlike i40e, the ice_put_rx_mbuf() function does
call ice_put_rx_buf() on the last buffer of the frame indicating the end of
packet.
For non-linear (multi-buffer) frames, we need to take care when adjusting
the pagecnt_bias. An XDP program might release fragments from the tail of
the frame, in which case that fragment page is already released. Only
update the pagecnt_bias for the first descriptor and fragments still
remaining post-XDP program. Take care to only access the shared info for
fragmented buffers, as this avoids a significant cache miss.
The xdp_xmit value only needs to be updated if an XDP program is run, and
only once per packet. Drop the xdp_xmit pointer argument from
ice_put_rx_mbuf(). Instead, set xdp_xmit in the ice_clean_rx_irq() function
directly. This avoids needing to pass the argument and avoids an extra
bit-wise OR for each buffer in the frame.
Move the increment of the ntc local variable to ensure its updated *before*
all calls to ice_get_pgcnts() or ice_put_rx_mbuf(), as the loop logic
requires the index of the element just after the current frame.
Now that we use an index pointer in the ring to identify the packet, we no
longer need to track or cache the number of fragments in the rx_ring. |
The JoomSport – for Sports: Team & League, Football, Hockey & more plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 5.7.3 via the task parameter. This makes it possible for unauthenticated attackers to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included. |
The Customify theme for WordPress is vulnerable to Cross-Site Request Forgery in version 0.4.11. This is due to missing or incorrect nonce validation on the reset_customize_section function. This makes it possible for unauthenticated attackers to reset theme customization settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Majestic Before After Image plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'before_label' and 'after_label' parameters in versions less than, or equal to, 2.0.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |