CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: davinci: Fix clk use after free
The remove function first frees the clks and only then calls
cpufreq_unregister_driver(). If one of the cpufreq callbacks is called
just before cpufreq_unregister_driver() is run, the freed clks might be
used. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix sdma v4 sw fini error
Fix sdma v4 sw fini error for sdma 4.2.2 to
solve the following general protection fault
[ +0.108196] general protection fault, probably for non-canonical
address 0xd5e5a4ae79d24a32: 0000 [#1] PREEMPT SMP PTI
[ +0.000018] RIP: 0010:free_fw_priv+0xd/0x70
[ +0.000022] Call Trace:
[ +0.000012] <TASK>
[ +0.000011] release_firmware+0x55/0x80
[ +0.000021] amdgpu_ucode_release+0x11/0x20 [amdgpu]
[ +0.000415] amdgpu_sdma_destroy_inst_ctx+0x4f/0x90 [amdgpu]
[ +0.000360] sdma_v4_0_sw_fini+0xce/0x110 [amdgpu] |
In the Linux kernel, the following vulnerability has been resolved:
net: usbnet: Fix WARNING in usbnet_start_xmit/usb_submit_urb
The syzbot fuzzer identified a problem in the usbnet driver:
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 754 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 754 Comm: kworker/0:2 Not tainted 6.4.0-rc7-syzkaller-00014-g692b7dc87ca6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Workqueue: mld mld_ifc_work
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
Code: 7c 24 18 e8 2c b4 5b fb 48 8b 7c 24 18 e8 42 07 f0 fe 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 c9 fc 8a e8 5a 6f 23 fb <0f> 0b e9 58 f8 ff ff e8 fe b3 5b fb 48 81 c5 c0 05 00 00 e9 84 f7
RSP: 0018:ffffc9000463f568 EFLAGS: 00010086
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff88801eb28000 RSI: ffffffff814c03b7 RDI: 0000000000000001
RBP: ffff8881443b7190 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000003
R13: ffff88802a77cb18 R14: 0000000000000003 R15: ffff888018262500
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556a99c15a18 CR3: 0000000028c71000 CR4: 0000000000350ef0
Call Trace:
<TASK>
usbnet_start_xmit+0xfe5/0x2190 drivers/net/usb/usbnet.c:1453
__netdev_start_xmit include/linux/netdevice.h:4918 [inline]
netdev_start_xmit include/linux/netdevice.h:4932 [inline]
xmit_one net/core/dev.c:3578 [inline]
dev_hard_start_xmit+0x187/0x700 net/core/dev.c:3594
...
This bug is caused by the fact that usbnet trusts the bulk endpoint
addresses its probe routine receives in the driver_info structure, and
it does not check to see that these endpoints actually exist and have
the expected type and directions.
The fix is simply to add such a check. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Rework long task execution when adding/deleting entries
When adding/deleting large number of elements in one step in ipset, it can
take a reasonable amount of time and can result in soft lockup errors. The
patch 5f7b51bf09ba ("netfilter: ipset: Limit the maximal range of
consecutive elements to add/delete") tried to fix it by limiting the max
elements to process at all. However it was not enough, it is still possible
that we get hung tasks. Lowering the limit is not reasonable, so the
approach in this patch is as follows: rely on the method used at resizing
sets and save the state when we reach a smaller internal batch limit,
unlock/lock and proceed from the saved state. Thus we can avoid long
continuous tasks and at the same time removed the limit to add/delete large
number of elements in one step.
The nfnl mutex is held during the whole operation which prevents one to
issue other ipset commands in parallel. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915: mark requests for GuC virtual engines to avoid use-after-free
References to i915_requests may be trapped by userspace inside a
sync_file or dmabuf (dma-resv) and held indefinitely across different
proceses. To counter-act the memory leaks, we try to not to keep
references from the request past their completion.
On the other side on fence release we need to know if rq->engine
is valid and points to hw engine (true for non-virtual requests).
To make it possible extra bit has been added to rq->execution_mask,
for marking virtual engines.
(cherry picked from commit 280410677af763f3871b93e794a199cfcf6fb580) |
In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: avoid struct memcpy overrun warning
A previous patch addressed the fortified memcpy warning for most
builds, but I still see this one with gcc-9:
In file included from include/linux/string.h:254,
from drivers/hid/hid-hyperv.c:8:
In function 'fortify_memcpy_chk',
inlined from 'mousevsc_on_receive' at drivers/hid/hid-hyperv.c:272:3:
include/linux/fortify-string.h:583:4: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
583 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
My guess is that the WARN_ON() itself is what confuses gcc, so it no
longer sees that there is a correct range check. Rework the code in a
way that helps readability and avoids the warning. |
In the Linux kernel, the following vulnerability has been resolved:
staging: ks7010: potential buffer overflow in ks_wlan_set_encode_ext()
The "exc->key_len" is a u16 that comes from the user. If it's over
IW_ENCODING_TOKEN_MAX (64) that could lead to memory corruption. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the cuobjdump binary where a user may cause an out-of-bounds read by passing a malformed ELF file to cuobjdump. A successful exploit of this vulnerability may lead to a partial denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a divide by zero error by submitting a specially crafted JPEG file. A successful exploit of this vulnerability may lead to denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a GPU out-of-bounds write by providing certain image dimensions. A successful exploit of this vulnerability may lead to denial of service and information disclosure. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm where an attacker may cause a heap-based buffer overflow by getting the user to run nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to arbitrary code execution at the privilege level of the user running nvdisasm. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm where a user may cause an out-of-bounds write by running nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in cuobjdump where an attacker may cause a stack-based buffer overflow by getting the user to run cuobjdump on a malicious ELF file. A successful exploit of this vulnerability may lead to arbitrary code execution at the privilege level of the user running
cuobjdump. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
The Limit Bio WordPress plugin through 1.0 does not have CSRF check when updating its settings, and is missing sanitisation as well as escaping, which could allow attackers to make logged in admin add Stored XSS payloads via a CSRF attack. |
NVIDIA CUDA Toolkit contains a vulnerability in cuobjdump, where an unprivileged user can cause a NULL pointer dereference. A successful exploit of this vulnerability may lead to a limited denial of service. |
Improper Privilege Management vulnerability in OpenText NetIQ Access Manager allows user account impersonation in specific scenario. This issue affects NetIQ Access Manager before 5.0.4.1 and before 5.1 |
Improper Input Validation vulnerability in OpenText NetIQ Access Manager leads to Cross-Site Scripting (XSS) attack. This issue affects Access Manager before 5.0.4.1 and 5.1. |