Search

Search Results (313723 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-39929 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix smbdirect_recv_io leak in smbd_negotiate() error path During tests of another unrelated patch I was able to trigger this error: Objects remaining on __kmem_cache_shutdown()
CVE-2025-39932 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: let smbd_destroy() call disable_work_sync(&info->post_send_credits_work) In smbd_destroy() we may destroy the memory so we better wait until post_send_credits_work is no longer pending and will never be started again. I actually just hit the case using rxe: WARNING: CPU: 0 PID: 138 at drivers/infiniband/sw/rxe/rxe_verbs.c:1032 rxe_post_recv+0x1ee/0x480 [rdma_rxe] ... [ 5305.686979] [ T138] smbd_post_recv+0x445/0xc10 [cifs] [ 5305.687135] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687149] [ T138] ? __kasan_check_write+0x14/0x30 [ 5305.687185] [ T138] ? __pfx_smbd_post_recv+0x10/0x10 [cifs] [ 5305.687329] [ T138] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 5305.687356] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687368] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687378] [ T138] ? _raw_spin_unlock_irqrestore+0x11/0x60 [ 5305.687389] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687399] [ T138] ? get_receive_buffer+0x168/0x210 [cifs] [ 5305.687555] [ T138] smbd_post_send_credits+0x382/0x4b0 [cifs] [ 5305.687701] [ T138] ? __pfx_smbd_post_send_credits+0x10/0x10 [cifs] [ 5305.687855] [ T138] ? __pfx___schedule+0x10/0x10 [ 5305.687865] [ T138] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 5305.687875] [ T138] ? queue_delayed_work_on+0x8e/0xa0 [ 5305.687889] [ T138] process_one_work+0x629/0xf80 [ 5305.687908] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687917] [ T138] ? __kasan_check_write+0x14/0x30 [ 5305.687933] [ T138] worker_thread+0x87f/0x1570 ... It means rxe_post_recv was called after rdma_destroy_qp(). This happened because put_receive_buffer() was triggered by ib_drain_qp() and called: queue_work(info->workqueue, &info->post_send_credits_work);
CVE-2025-39937 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: rfkill: gpio: Fix crash due to dereferencering uninitialized pointer Since commit 7d5e9737efda ("net: rfkill: gpio: get the name and type from device property") rfkill_find_type() gets called with the possibly uninitialized "const char *type_name;" local variable. On x86 systems when rfkill-gpio binds to a "BCM4752" or "LNV4752" acpi_device, the rfkill->type is set based on the ACPI acpi_device_id: rfkill->type = (unsigned)id->driver_data; and there is no "type" property so device_property_read_string() will fail and leave type_name uninitialized, leading to a potential crash. rfkill_find_type() does accept a NULL pointer, fix the potential crash by initializing type_name to NULL. Note likely sofar this has not been caught because: 1. Not many x86 machines actually have a "BCM4752"/"LNV4752" acpi_device 2. The stack happened to contain NULL where type_name is stored
CVE-2025-39938 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: q6apm-lpass-dais: Fix NULL pointer dereference if source graph failed If earlier opening of source graph fails (e.g. ADSP rejects due to incorrect audioreach topology), the graph is closed and "dai_data->graph[dai->id]" is assigned NULL. Preparing the DAI for sink graph continues though and next call to q6apm_lpass_dai_prepare() receives dai_data->graph[dai->id]=NULL leading to NULL pointer exception: qcom-apm gprsvc:service:2:1: Error (1) Processing 0x01001002 cmd qcom-apm gprsvc:service:2:1: DSP returned error[1001002] 1 q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: fail to start APM port 78 q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: ASoC: error at snd_soc_pcm_dai_prepare on TX_CODEC_DMA_TX_3: -22 Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a8 ... Call trace: q6apm_graph_media_format_pcm+0x48/0x120 (P) q6apm_lpass_dai_prepare+0x110/0x1b4 snd_soc_pcm_dai_prepare+0x74/0x108 __soc_pcm_prepare+0x44/0x160 dpcm_be_dai_prepare+0x124/0x1c0
CVE-2025-39939 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommu/s390: Fix memory corruption when using identity domain zpci_get_iommu_ctrs() returns counter information to be reported as part of device statistics; these counters are stored as part of the s390_domain. The problem, however, is that the identity domain is not backed by an s390_domain and so the conversion via to_s390_domain() yields a bad address that is zero'd initially and read on-demand later via a sysfs read. These counters aren't necessary for the identity domain; just return NULL in this case. This issue was discovered via KASAN with reports that look like: BUG: KASAN: global-out-of-bounds in zpci_fmb_enable_device when using the identity domain for a device on s390.
CVE-2025-39947 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Harden uplink netdev access against device unbind The function mlx5_uplink_netdev_get() gets the uplink netdevice pointer from mdev->mlx5e_res.uplink_netdev. However, the netdevice can be removed and its pointer cleared when unbound from the mlx5_core.eth driver. This results in a NULL pointer, causing a kernel panic. BUG: unable to handle page fault for address: 0000000000001300 at RIP: 0010:mlx5e_vport_rep_load+0x22a/0x270 [mlx5_core] Call Trace: <TASK> mlx5_esw_offloads_rep_load+0x68/0xe0 [mlx5_core] esw_offloads_enable+0x593/0x910 [mlx5_core] mlx5_eswitch_enable_locked+0x341/0x420 [mlx5_core] mlx5_devlink_eswitch_mode_set+0x17e/0x3a0 [mlx5_core] devlink_nl_eswitch_set_doit+0x60/0xd0 genl_family_rcv_msg_doit+0xe0/0x130 genl_rcv_msg+0x183/0x290 netlink_rcv_skb+0x4b/0xf0 genl_rcv+0x24/0x40 netlink_unicast+0x255/0x380 netlink_sendmsg+0x1f3/0x420 __sock_sendmsg+0x38/0x60 __sys_sendto+0x119/0x180 do_syscall_64+0x53/0x1d0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Ensure the pointer is valid before use by checking it for NULL. If it is valid, immediately call netdev_hold() to take a reference, and preventing the netdevice from being freed while it is in use.
CVE-2025-39949 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: qed: Don't collect too many protection override GRC elements In the protection override dump path, the firmware can return far too many GRC elements, resulting in attempting to write past the end of the previously-kmalloc'ed dump buffer. This will result in a kernel panic with reason: BUG: unable to handle kernel paging request at ADDRESS where "ADDRESS" is just past the end of the protection override dump buffer. The start address of the buffer is: p_hwfn->cdev->dbg_features[DBG_FEATURE_PROTECTION_OVERRIDE].dump_buf and the size of the buffer is buf_size in the same data structure. The panic can be arrived at from either the qede Ethernet driver path: [exception RIP: qed_grc_dump_addr_range+0x108] qed_protection_override_dump at ffffffffc02662ed [qed] qed_dbg_protection_override_dump at ffffffffc0267792 [qed] qed_dbg_feature at ffffffffc026aa8f [qed] qed_dbg_all_data at ffffffffc026b211 [qed] qed_fw_fatal_reporter_dump at ffffffffc027298a [qed] devlink_health_do_dump at ffffffff82497f61 devlink_health_report at ffffffff8249cf29 qed_report_fatal_error at ffffffffc0272baf [qed] qede_sp_task at ffffffffc045ed32 [qede] process_one_work at ffffffff81d19783 or the qedf storage driver path: [exception RIP: qed_grc_dump_addr_range+0x108] qed_protection_override_dump at ffffffffc068b2ed [qed] qed_dbg_protection_override_dump at ffffffffc068c792 [qed] qed_dbg_feature at ffffffffc068fa8f [qed] qed_dbg_all_data at ffffffffc0690211 [qed] qed_fw_fatal_reporter_dump at ffffffffc069798a [qed] devlink_health_do_dump at ffffffff8aa95e51 devlink_health_report at ffffffff8aa9ae19 qed_report_fatal_error at ffffffffc0697baf [qed] qed_hw_err_notify at ffffffffc06d32d7 [qed] qed_spq_post at ffffffffc06b1011 [qed] qed_fcoe_destroy_conn at ffffffffc06b2e91 [qed] qedf_cleanup_fcport at ffffffffc05e7597 [qedf] qedf_rport_event_handler at ffffffffc05e7bf7 [qedf] fc_rport_work at ffffffffc02da715 [libfc] process_one_work at ffffffff8a319663 Resolve this by clamping the firmware's return value to the maximum number of legal elements the firmware should return.
CVE-2025-39950 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: net/tcp: Fix a NULL pointer dereference when using TCP-AO with TCP_REPAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182)
CVE-2025-39952 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: avoid buffer overflow in WID string configuration Fix the following copy overflow warning identified by Smatch checker. drivers/net/wireless/microchip/wilc1000/wlan_cfg.c:184 wilc_wlan_parse_response_frame() error: '__memcpy()' 'cfg->s[i]->str' copy overflow (512 vs 65537) This patch introduces size check before accessing the memory buffer. The checks are base on the WID type of received data from the firmware. For WID string configuration, the size limit is determined by individual element size in 'struct wilc_cfg_str_vals' that is maintained in 'len' field of 'struct wilc_cfg_str'.
CVE-2025-39953 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cgroup: split cgroup_destroy_wq into 3 workqueues A hung task can occur during [1] LTP cgroup testing when repeatedly mounting/unmounting perf_event and net_prio controllers with systemd.unified_cgroup_hierarchy=1. The hang manifests in cgroup_lock_and_drain_offline() during root destruction. Related case: cgroup_fj_function_perf_event cgroup_fj_function.sh perf_event cgroup_fj_function_net_prio cgroup_fj_function.sh net_prio Call Trace: cgroup_lock_and_drain_offline+0x14c/0x1e8 cgroup_destroy_root+0x3c/0x2c0 css_free_rwork_fn+0x248/0x338 process_one_work+0x16c/0x3b8 worker_thread+0x22c/0x3b0 kthread+0xec/0x100 ret_from_fork+0x10/0x20 Root Cause: CPU0 CPU1 mount perf_event umount net_prio cgroup1_get_tree cgroup_kill_sb rebind_subsystems // root destruction enqueues // cgroup_destroy_wq // kill all perf_event css // one perf_event css A is dying // css A offline enqueues cgroup_destroy_wq // root destruction will be executed first css_free_rwork_fn cgroup_destroy_root cgroup_lock_and_drain_offline // some perf descendants are dying // cgroup_destroy_wq max_active = 1 // waiting for css A to die Problem scenario: 1. CPU0 mounts perf_event (rebind_subsystems) 2. CPU1 unmounts net_prio (cgroup_kill_sb), queuing root destruction work 3. A dying perf_event CSS gets queued for offline after root destruction 4. Root destruction waits for offline completion, but offline work is blocked behind root destruction in cgroup_destroy_wq (max_active=1) Solution: Split cgroup_destroy_wq into three dedicated workqueues: cgroup_offline_wq – Handles CSS offline operations cgroup_release_wq – Manages resource release cgroup_free_wq – Performs final memory deallocation This separation eliminates blocking in the CSS free path while waiting for offline operations to complete. [1] https://github.com/linux-test-project/ltp/blob/master/runtest/controllers
CVE-2025-10311 1 Wordpress 1 Wordpress 2025-10-06 4.3 Medium
The Comment Info Detector plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0.5. This is due to missing nonce validation on the options.php file when handling form submissions. This makes it possible for unauthenticated attackers to modify plugin settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link.
CVE-2025-10609 1 Logo Software 1 Tigerwings Erp 2025-10-06 5.9 Medium
Use of Hard-coded Credentials vulnerability in Logo Software Inc. TigerWings ERP allows Read Sensitive Constants Within an Executable.This issue affects TigerWings ERP: from 01.01.00 before 3.03.00.
CVE-2025-10728 1 Qt 1 Qt 2025-10-06 4.0 Medium
When the module renders a Svg file that contains a <pattern> element, it might end up rendering it recursively leading to stack overflow DoS
CVE-2025-23248 3 Linux, Microsoft, Nvidia 3 Linux Kernel, Windows, Cuda Toolkit 2025-10-06 3.3 Low
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service.
CVE-2025-11337 2025-10-06 5.3 Medium
A vulnerability was detected in Four-Faith Water Conservancy Informatization Platform up to 2.2. This affects an unknown part of the file /aloneReport/index.do/../../aloneReport/download.do;othersusrlogout.do. Performing manipulation of the argument fileName results in path traversal. It is possible to initiate the attack remotely. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-11332 1 Cmseasy 1 Cmseasy 2025-10-06 3.5 Low
A vulnerability was determined in CmsEasy up to 7.7.7. This affects an unknown function in the library lib/inc/view.php of the component URL Handler. Executing manipulation of the argument PHP_SELF can lead to cross site scripting. The attack may be launched remotely. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2023-53558 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: rcu-tasks: Avoid pr_info() with spin lock in cblist_init_generic() pr_info() is called with rtp->cbs_gbl_lock spin lock locked. Because pr_info() calls printk() that might sleep, this will result in BUG like below: [ 0.206455] cblist_init_generic: Setting adjustable number of callback queues. [ 0.206463] [ 0.206464] ============================= [ 0.206464] [ BUG: Invalid wait context ] [ 0.206465] 5.19.0-00428-g9de1f9c8ca51 #5 Not tainted [ 0.206466] ----------------------------- [ 0.206466] swapper/0/1 is trying to lock: [ 0.206467] ffffffffa0167a58 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x327/0x4a0 [ 0.206473] other info that might help us debug this: [ 0.206473] context-{5:5} [ 0.206474] 3 locks held by swapper/0/1: [ 0.206474] #0: ffffffff9eb597e0 (rcu_tasks.cbs_gbl_lock){....}-{2:2}, at: cblist_init_generic.constprop.0+0x14/0x1f0 [ 0.206478] #1: ffffffff9eb579c0 (console_lock){+.+.}-{0:0}, at: _printk+0x63/0x7e [ 0.206482] #2: ffffffff9ea77780 (console_owner){....}-{0:0}, at: console_emit_next_record.constprop.0+0x111/0x330 [ 0.206485] stack backtrace: [ 0.206486] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-00428-g9de1f9c8ca51 #5 [ 0.206488] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 [ 0.206489] Call Trace: [ 0.206490] <TASK> [ 0.206491] dump_stack_lvl+0x6a/0x9f [ 0.206493] __lock_acquire.cold+0x2d7/0x2fe [ 0.206496] ? stack_trace_save+0x46/0x70 [ 0.206497] lock_acquire+0xd1/0x2f0 [ 0.206499] ? serial8250_console_write+0x327/0x4a0 [ 0.206500] ? __lock_acquire+0x5c7/0x2720 [ 0.206502] _raw_spin_lock_irqsave+0x3d/0x90 [ 0.206504] ? serial8250_console_write+0x327/0x4a0 [ 0.206506] serial8250_console_write+0x327/0x4a0 [ 0.206508] console_emit_next_record.constprop.0+0x180/0x330 [ 0.206511] console_unlock+0xf7/0x1f0 [ 0.206512] vprintk_emit+0xf7/0x330 [ 0.206514] _printk+0x63/0x7e [ 0.206516] cblist_init_generic.constprop.0.cold+0x24/0x32 [ 0.206518] rcu_init_tasks_generic+0x5/0xd9 [ 0.206522] kernel_init_freeable+0x15b/0x2a2 [ 0.206523] ? rest_init+0x160/0x160 [ 0.206526] kernel_init+0x11/0x120 [ 0.206527] ret_from_fork+0x1f/0x30 [ 0.206530] </TASK> [ 0.207018] cblist_init_generic: Setting shift to 1 and lim to 1. This patch moves pr_info() so that it is called without rtp->cbs_gbl_lock locked.
CVE-2023-53550 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: fix global sysfs attribute type In commit 3666062b87ec ("cpufreq: amd-pstate: move to use bus_get_dev_root()") the "amd_pstate" attributes where moved from a dedicated kobject to the cpu root kobject. While the dedicated kobject expects to contain kobj_attributes the root kobject needs device_attributes. As the changed arguments are not used by the callbacks it works most of the time. However CFI will detect this issue: [ 4947.849350] CFI failure at dev_attr_show+0x24/0x60 (target: show_status+0x0/0x70; expected type: 0x8651b1de) ... [ 4947.849409] Call Trace: [ 4947.849410] <TASK> [ 4947.849411] ? __warn+0xcf/0x1c0 [ 4947.849414] ? dev_attr_show+0x24/0x60 [ 4947.849415] ? report_cfi_failure+0x4e/0x60 [ 4947.849417] ? handle_cfi_failure+0x14c/0x1d0 [ 4947.849419] ? __cfi_show_status+0x10/0x10 [ 4947.849420] ? handle_bug+0x4f/0x90 [ 4947.849421] ? exc_invalid_op+0x1a/0x60 [ 4947.849422] ? asm_exc_invalid_op+0x1a/0x20 [ 4947.849424] ? __cfi_show_status+0x10/0x10 [ 4947.849425] ? dev_attr_show+0x24/0x60 [ 4947.849426] sysfs_kf_seq_show+0xa6/0x110 [ 4947.849433] seq_read_iter+0x16c/0x4b0 [ 4947.849436] vfs_read+0x272/0x2d0 [ 4947.849438] ksys_read+0x72/0xe0 [ 4947.849439] do_syscall_64+0x76/0xb0 [ 4947.849440] ? do_user_addr_fault+0x252/0x650 [ 4947.849442] ? exc_page_fault+0x7a/0x1b0 [ 4947.849443] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-53616 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount syzbot found an invalid-free in diUnmount: BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline] BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674 Free of addr ffff88806f410000 by task syz-executor131/3632 CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460 ____kasan_slab_free+0xfb/0x120 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1724 [inline] slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750 slab_free mm/slub.c:3661 [inline] __kmem_cache_free+0x71/0x110 mm/slub.c:3674 diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195 jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63 jfs_put_super+0x86/0x190 fs/jfs/super.c:194 generic_shutdown_super+0x130/0x310 fs/super.c:492 kill_block_super+0x79/0xd0 fs/super.c:1428 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 cleanup_mnt+0x494/0x520 fs/namespace.c:1186 task_work_run+0x243/0x300 kernel/task_work.c:179 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x664/0x2070 kernel/exit.c:820 do_group_exit+0x1fd/0x2b0 kernel/exit.c:950 __do_sys_exit_group kernel/exit.c:961 [inline] __se_sys_exit_group kernel/exit.c:959 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount. If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount(). JFS_IP(ipimap)->i_imap will be freed once again. Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free.
CVE-2023-53584 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubifs: ubifs_releasepage: Remove ubifs_assert(0) to valid this process There are two states for ubifs writing pages: 1. Dirty, Private 2. Not Dirty, Not Private The normal process cannot go to ubifs_releasepage() which means there exists pages being private but not dirty. Reproducer[1] shows that it could occur (which maybe related to [2]) with following process: PA PB PC lock(page)[PA] ubifs_write_end attach_page_private // set Private __set_page_dirty_nobuffers // set Dirty unlock(page) write_cache_pages[PA] lock(page) clear_page_dirty_for_io(page) // clear Dirty ubifs_writepage do_truncation[PB] truncate_setsize i_size_write(inode, newsize) // newsize = 0 i_size = i_size_read(inode) // i_size = 0 end_index = i_size >> PAGE_SHIFT if (page->index > end_index) goto out // jump out: unlock(page) // Private, Not Dirty generic_fadvise[PC] lock(page) invalidate_inode_page try_to_release_page ubifs_releasepage ubifs_assert(c, 0) // bad assertion! unlock(page) truncate_pagecache[PB] Then we may get following assertion failed: UBIFS error (ubi0:0 pid 1683): ubifs_assert_failed [ubifs]: UBIFS assert failed: 0, in fs/ubifs/file.c:1513 UBIFS warning (ubi0:0 pid 1683): ubifs_ro_mode [ubifs]: switched to read-only mode, error -22 CPU: 2 PID: 1683 Comm: aa Not tainted 5.16.0-rc5-00184-g0bca5994cacc-dirty #308 Call Trace: dump_stack+0x13/0x1b ubifs_ro_mode+0x54/0x60 [ubifs] ubifs_assert_failed+0x4b/0x80 [ubifs] ubifs_releasepage+0x67/0x1d0 [ubifs] try_to_release_page+0x57/0xe0 invalidate_inode_page+0xfb/0x130 __invalidate_mapping_pages+0xb9/0x280 invalidate_mapping_pagevec+0x12/0x20 generic_fadvise+0x303/0x3c0 ksys_fadvise64_64+0x4c/0xb0 [1] https://bugzilla.kernel.org/show_bug.cgi?id=215373 [2] https://linux-mtd.infradead.narkive.com/NQoBeT1u/patch-rfc-ubifs-fix-assert-failed-in-ubifs-set-page-dirty