Filtered by vendor Netapp
Subscriptions
Filtered by product H300s Firmware
Subscriptions
Total
265 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2021-25220 | 6 Fedoraproject, Isc, Juniper and 3 more | 50 Fedora, Bind, Junos and 47 more | 2024-11-21 | 6.8 Medium |
BIND 9.11.0 -> 9.11.36 9.12.0 -> 9.16.26 9.17.0 -> 9.18.0 BIND Supported Preview Editions: 9.11.4-S1 -> 9.11.36-S1 9.16.8-S1 -> 9.16.26-S1 Versions of BIND 9 earlier than those shown - back to 9.1.0, including Supported Preview Editions - are also believed to be affected but have not been tested as they are EOL. The cache could become poisoned with incorrect records leading to queries being made to the wrong servers, which might also result in false information being returned to clients. | ||||
CVE-2021-25219 | 7 Debian, Fedoraproject, Isc and 4 more | 24 Debian Linux, Fedora, Bind and 21 more | 2024-11-21 | 5.3 Medium |
In BIND 9.3.0 -> 9.11.35, 9.12.0 -> 9.16.21, and versions 9.9.3-S1 -> 9.11.35-S1 and 9.16.8-S1 -> 9.16.21-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.18 of the BIND 9.17 development branch, exploitation of broken authoritative servers using a flaw in response processing can cause degradation in BIND resolver performance. The way the lame cache is currently designed makes it possible for its internal data structures to grow almost infinitely, which may cause significant delays in client query processing. | ||||
CVE-2021-25216 | 4 Debian, Isc, Netapp and 1 more | 23 Debian Linux, Bind, Active Iq Unified Manager and 20 more | 2024-11-21 | 8.1 High |
In BIND 9.5.0 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.11.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.1 of the BIND 9.17 development branch, BIND servers are vulnerable if they are running an affected version and are configured to use GSS-TSIG features. In a configuration which uses BIND's default settings the vulnerable code path is not exposed, but a server can be rendered vulnerable by explicitly setting values for the tkey-gssapi-keytab or tkey-gssapi-credential configuration options. Although the default configuration is not vulnerable, GSS-TSIG is frequently used in networks where BIND is integrated with Samba, as well as in mixed-server environments that combine BIND servers with Active Directory domain controllers. For servers that meet these conditions, the ISC SPNEGO implementation is vulnerable to various attacks, depending on the CPU architecture for which BIND was built: For named binaries compiled for 64-bit platforms, this flaw can be used to trigger a buffer over-read, leading to a server crash. For named binaries compiled for 32-bit platforms, this flaw can be used to trigger a server crash due to a buffer overflow and possibly also to achieve remote code execution. We have determined that standard SPNEGO implementations are available in the MIT and Heimdal Kerberos libraries, which support a broad range of operating systems, rendering the ISC implementation unnecessary and obsolete. Therefore, to reduce the attack surface for BIND users, we will be removing the ISC SPNEGO implementation in the April releases of BIND 9.11 and 9.16 (it had already been dropped from BIND 9.17). We would not normally remove something from a stable ESV (Extended Support Version) of BIND, but since system libraries can replace the ISC SPNEGO implementation, we have made an exception in this case for reasons of stability and security. | ||||
CVE-2021-25215 | 7 Debian, Fedoraproject, Isc and 4 more | 31 Debian Linux, Fedora, Bind and 28 more | 2024-11-21 | 7.5 High |
In BIND 9.0.0 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.9.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.11 of the BIND 9.17 development branch, when a vulnerable version of named receives a query for a record triggering the flaw described above, the named process will terminate due to a failed assertion check. The vulnerability affects all currently maintained BIND 9 branches (9.11, 9.11-S, 9.16, 9.16-S, 9.17) as well as all other versions of BIND 9. | ||||
CVE-2021-25214 | 6 Debian, Fedoraproject, Isc and 3 more | 25 Debian Linux, Fedora, Bind and 22 more | 2024-11-21 | 6.5 Medium |
In BIND 9.8.5 -> 9.8.8, 9.9.3 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.9.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND 9 Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.11 of the BIND 9.17 development branch, when a vulnerable version of named receives a malformed IXFR triggering the flaw described above, the named process will terminate due to a failed assertion the next time the transferred secondary zone is refreshed. | ||||
CVE-2021-23133 | 6 Broadcom, Debian, Fedoraproject and 3 more | 25 Brocade Fabric Operating System, Debian Linux, Fedora and 22 more | 2024-11-21 | 6.7 Medium |
A race condition in Linux kernel SCTP sockets (net/sctp/socket.c) before 5.12-rc8 can lead to kernel privilege escalation from the context of a network service or an unprivileged process. If sctp_destroy_sock is called without sock_net(sk)->sctp.addr_wq_lock then an element is removed from the auto_asconf_splist list without any proper locking. This can be exploited by an attacker with network service privileges to escalate to root or from the context of an unprivileged user directly if a BPF_CGROUP_INET_SOCK_CREATE is attached which denies creation of some SCTP socket. | ||||
CVE-2021-22947 | 9 Apple, Debian, Fedoraproject and 6 more | 37 Macos, Debian Linux, Fedora and 34 more | 2024-11-21 | 5.9 Medium |
When curl >= 7.20.0 and <= 7.78.0 connects to an IMAP or POP3 server to retrieve data using STARTTLS to upgrade to TLS security, the server can respond and send back multiple responses at once that curl caches. curl would then upgrade to TLS but not flush the in-queue of cached responses but instead continue using and trustingthe responses it got *before* the TLS handshake as if they were authenticated.Using this flaw, it allows a Man-In-The-Middle attacker to first inject the fake responses, then pass-through the TLS traffic from the legitimate server and trick curl into sending data back to the user thinking the attacker's injected data comes from the TLS-protected server. | ||||
CVE-2021-22946 | 9 Apple, Debian, Fedoraproject and 6 more | 40 Macos, Debian Linux, Fedora and 37 more | 2024-11-21 | 7.5 High |
A user can tell curl >= 7.20.0 and <= 7.78.0 to require a successful upgrade to TLS when speaking to an IMAP, POP3 or FTP server (`--ssl-reqd` on the command line or`CURLOPT_USE_SSL` set to `CURLUSESSL_CONTROL` or `CURLUSESSL_ALL` withlibcurl). This requirement could be bypassed if the server would return a properly crafted but perfectly legitimate response.This flaw would then make curl silently continue its operations **withoutTLS** contrary to the instructions and expectations, exposing possibly sensitive data in clear text over the network. | ||||
CVE-2021-22945 | 8 Apple, Debian, Fedoraproject and 5 more | 25 Macos, Debian Linux, Fedora and 22 more | 2024-11-21 | 9.1 Critical |
When sending data to an MQTT server, libcurl <= 7.73.0 and 7.78.0 could in some circumstances erroneously keep a pointer to an already freed memory area and both use that again in a subsequent call to send data and also free it *again*. | ||||
CVE-2021-22926 | 5 Haxx, Netapp, Oracle and 2 more | 26 Curl, Active Iq Unified Manager, Clustered Data Ontap and 23 more | 2024-11-21 | 7.5 High |
libcurl-using applications can ask for a specific client certificate to be used in a transfer. This is done with the `CURLOPT_SSLCERT` option (`--cert` with the command line tool).When libcurl is built to use the macOS native TLS library Secure Transport, an application can ask for the client certificate by name or with a file name - using the same option. If the name exists as a file, it will be used instead of by name.If the appliction runs with a current working directory that is writable by other users (like `/tmp`), a malicious user can create a file name with the same name as the app wants to use by name, and thereby trick the application to use the file based cert instead of the one referred to by name making libcurl send the wrong client certificate in the TLS connection handshake. | ||||
CVE-2021-22925 | 8 Apple, Fedoraproject, Haxx and 5 more | 28 Mac Os X, Macos, Fedora and 25 more | 2024-11-21 | 5.3 Medium |
curl supports the `-t` command line option, known as `CURLOPT_TELNETOPTIONS`in libcurl. This rarely used option is used to send variable=content pairs toTELNET servers.Due to flaw in the option parser for sending `NEW_ENV` variables, libcurlcould be made to pass on uninitialized data from a stack based buffer to theserver. Therefore potentially revealing sensitive internal information to theserver using a clear-text network protocol.This could happen because curl did not call and use sscanf() correctly whenparsing the string provided by the application. | ||||
CVE-2021-22923 | 7 Fedoraproject, Haxx, Netapp and 4 more | 25 Fedora, Curl, Cloud Backup and 22 more | 2024-11-21 | 5.3 Medium |
When curl is instructed to get content using the metalink feature, and a user name and password are used to download the metalink XML file, those same credentials are then subsequently passed on to each of the servers from which curl will download or try to download the contents from. Often contrary to the user's expectations and intentions and without telling the user it happened. | ||||
CVE-2021-22922 | 7 Fedoraproject, Haxx, Netapp and 4 more | 25 Fedora, Curl, Cloud Backup and 22 more | 2024-11-21 | 6.5 Medium |
When curl is instructed to download content using the metalink feature, thecontents is verified against a hash provided in the metalink XML file.The metalink XML file points out to the client how to get the same contentfrom a set of different URLs, potentially hosted by different servers and theclient can then download the file from one or several of them. In a serial orparallel manner.If one of the servers hosting the contents has been breached and the contentsof the specific file on that server is replaced with a modified payload, curlshould detect this when the hash of the file mismatches after a completeddownload. It should remove the contents and instead try getting the contentsfrom another URL. This is not done, and instead such a hash mismatch is onlymentioned in text and the potentially malicious content is kept in the file ondisk. | ||||
CVE-2021-22901 | 6 Haxx, Netapp, Oracle and 3 more | 35 Curl, Active Iq Unified Manager, Cloud Backup and 32 more | 2024-11-21 | 8.1 High |
curl 7.75.0 through 7.76.1 suffers from a use-after-free vulnerability resulting in already freed memory being used when a TLS 1.3 session ticket arrives over a connection. A malicious server can use this in rare unfortunate circumstances to potentially reach remote code execution in the client. When libcurl at run-time sets up support for TLS 1.3 session tickets on a connection using OpenSSL, it stores pointers to the transfer in-memory object for later retrieval when a session ticket arrives. If the connection is used by multiple transfers (like with a reused HTTP/1.1 connection or multiplexed HTTP/2 connection) that first transfer object might be freed before the new session is established on that connection and then the function will access a memory buffer that might be freed. When using that memory, libcurl might even call a function pointer in the object, making it possible for a remote code execution if the server could somehow manage to get crafted memory content into the correct place in memory. | ||||
CVE-2021-22897 | 5 Haxx, Netapp, Oracle and 2 more | 30 Curl, Cloud Backup, H300e and 27 more | 2024-11-21 | 5.3 Medium |
curl 7.61.0 through 7.76.1 suffers from exposure of data element to wrong session due to a mistake in the code for CURLOPT_SSL_CIPHER_LIST when libcurl is built to use the Schannel TLS library. The selected cipher set was stored in a single "static" variable in the library, which has the surprising side-effect that if an application sets up multiple concurrent transfers, the last one that sets the ciphers will accidentally control the set used by all transfers. In a worst-case scenario, this weakens transport security significantly. | ||||
CVE-2021-22600 | 3 Debian, Linux, Netapp | 12 Debian Linux, Linux Kernel, H300s and 9 more | 2024-11-21 | 6.6 Medium |
A double free bug in packet_set_ring() in net/packet/af_packet.c can be exploited by a local user through crafted syscalls to escalate privileges or deny service. We recommend upgrading kernel past the effected versions or rebuilding past ec6af094ea28f0f2dda1a6a33b14cd57e36a9755 | ||||
CVE-2021-22543 | 5 Debian, Fedoraproject, Linux and 2 more | 29 Debian Linux, Fedora, Linux Kernel and 26 more | 2024-11-21 | 7.8 High |
An issue was discovered in Linux: KVM through Improper handling of VM_IO|VM_PFNMAP vmas in KVM can bypass RO checks and can lead to pages being freed while still accessible by the VMM and guest. This allows users with the ability to start and control a VM to read/write random pages of memory and can result in local privilege escalation. | ||||
CVE-2021-20322 | 6 Debian, Fedoraproject, Linux and 3 more | 34 Debian Linux, Fedora, Linux Kernel and 31 more | 2024-11-21 | 7.4 High |
A flaw in the processing of received ICMP errors (ICMP fragment needed and ICMP redirect) in the Linux kernel functionality was found to allow the ability to quickly scan open UDP ports. This flaw allows an off-path remote user to effectively bypass the source port UDP randomization. The highest threat from this vulnerability is to confidentiality and possibly integrity, because software that relies on UDP source port randomization are indirectly affected as well. | ||||
CVE-2020-8835 | 4 Canonical, Fedoraproject, Linux and 1 more | 47 Ubuntu Linux, Fedora, Linux Kernel and 44 more | 2024-11-21 | 7.8 High |
In the Linux kernel 5.5.0 and newer, the bpf verifier (kernel/bpf/verifier.c) did not properly restrict the register bounds for 32-bit operations, leading to out-of-bounds reads and writes in kernel memory. The vulnerability also affects the Linux 5.4 stable series, starting with v5.4.7, as the introducing commit was backported to that branch. This vulnerability was fixed in 5.6.1, 5.5.14, and 5.4.29. (issue is aka ZDI-CAN-10780) | ||||
CVE-2020-8832 | 2 Canonical, Netapp | 60 Ubuntu Linux, Aff 8300, Aff 8300 Firmware and 57 more | 2024-11-21 | 5.5 Medium |
The fix for the Linux kernel in Ubuntu 18.04 LTS for CVE-2019-14615 ("The Linux kernel did not properly clear data structures on context switches for certain Intel graphics processors.") was discovered to be incomplete, meaning that in versions of the kernel before 4.15.0-91.92, an attacker could use this vulnerability to expose sensitive information. |