Search

Search Results (317673 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-62263 1 Liferay 4 Digital Experience Platform, Dxp, Liferay Portal and 1 more 2025-11-10 5.4 Medium
Multiple cross-site scripting (XSS) vulnerabilities in Liferay Portal 7.3.7 through 7.4.3.103, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 service pack 3 through update 36 allow remote attackers to inject arbitrary web script or HTML via a crafted payload injected into an Account Role’s “Title” text field to (1) view account role page, or (2) select account role page. Multiple cross-site scripting (XSS) vulnerabilities in Liferay Portal 7.3.7 through 7.4.3.103, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 service pack 3 through update 36 allow remote attackers to inject arbitrary web script or HTML via a crafted payload injected into an Organization’s “Name” text field to (1) view account page, (2) view account organization page, or (3) select account organization page.
CVE-2025-62262 1 Liferay 4 Digital Experience Platform, Dxp, Liferay Portal and 1 more 2025-11-10 4.4 Medium
Information exposure through log file vulnerability in LDAP import feature in Liferay Portal 7.4.0 through 7.4.3.97, and older unsupported versions, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions allows local users to view user email address in the log files.
CVE-2025-62260 1 Liferay 4 Digital Experience Platform, Dxp, Liferay Portal and 1 more 2025-11-10 7.5 High
Liferay Portal 7.4.0 through 7.4.3.99, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions does not limit the number of objects returned from Headless API requests, which allows remote attackers to perform denial-of-service (DoS) attacks on the application by executing a request that returns a large number of objects.
CVE-2025-62261 1 Liferay 4 Digital Experience Platform, Dxp, Liferay Portal and 1 more 2025-11-10 6.5 Medium
Liferay Portal 7.4.0 through 7.4.3.99, and older unsupported versions, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 34, and older unsupported versions stores password reset tokens in plain text, which allows attackers with access to the database to obtain the token, reset a user’s password and take over the user’s account.
CVE-2025-12868 1 Cybertutor 1 New Site Server 2025-11-10 9.8 Critical
New Site Server developed by CyberTutor has a Use of Client-Side Authentication vulnerability, allowing unauthenticated remote attackers to modify the frontend code to gain administrator privileges on the website.
CVE-2025-59777 1 Gnu 1 Libmicrohttpd 2025-11-10 5.3 Medium
NULL pointer dereference vulnerability exists in GNU libmicrohttpd v1.0.2 and earlier. The vulnerability was fixed in commit ff13abc on the master branch of the libmicrohttpd Git repository, after the v1.0.2 tag. A specially crafted packet sent by an attacker could cause a denial-of-service (DoS) condition.
CVE-2025-62258 1 Liferay 4 Digital Experience Platform, Dxp, Liferay Portal and 1 more 2025-11-10 6.5 Medium
CSRF vulnerability in Headless API in Liferay Portal 7.4.0 through 7.4.3.107, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions allows remote attackers to execute any Headless API via the `endpoint` parameter.
CVE-2025-62257 1 Liferay 4 Digital Experience Platform, Dxp, Liferay Portal and 1 more 2025-11-10 5.3 Medium
Password enumeration vulnerability in Liferay Portal 7.4.0 through 7.4.3.119, and older unsupported versions, and Liferay DXP 2024.Q1.1 through 2024.Q1.5, 2023.Q4.0 through 2023.Q4.10, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and older unsupported versions allows remote attackers to determine a user’s password even if account lockout is enabled via brute force attack.
CVE-2022-49879 1 Linux 1 Linux Kernel 2025-11-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix BUG_ON() when directory entry has invalid rec_len The rec_len field in the directory entry has to be a multiple of 4. A corrupted filesystem image can be used to hit a BUG() in ext4_rec_len_to_disk(), called from make_indexed_dir(). ------------[ cut here ]------------ kernel BUG at fs/ext4/ext4.h:2413! ... RIP: 0010:make_indexed_dir+0x53f/0x5f0 ... Call Trace: <TASK> ? add_dirent_to_buf+0x1b2/0x200 ext4_add_entry+0x36e/0x480 ext4_add_nondir+0x2b/0xc0 ext4_create+0x163/0x200 path_openat+0x635/0xe90 do_filp_open+0xb4/0x160 ? __create_object.isra.0+0x1de/0x3b0 ? _raw_spin_unlock+0x12/0x30 do_sys_openat2+0x91/0x150 __x64_sys_open+0x6c/0xa0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The fix simply adds a call to ext4_check_dir_entry() to validate the directory entry, returning -EFSCORRUPTED if the entry is invalid.
CVE-2022-49882 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-10 7.8 High
In the Linux kernel, the following vulnerability has been resolved: KVM: Reject attempts to consume or refresh inactive gfn_to_pfn_cache Reject kvm_gpc_check() and kvm_gpc_refresh() if the cache is inactive. Not checking the active flag during refresh is particularly egregious, as KVM can end up with a valid, inactive cache, which can lead to a variety of use-after-free bugs, e.g. consuming a NULL kernel pointer or missing an mmu_notifier invalidation due to the cache not being on the list of gfns to invalidate. Note, "active" needs to be set if and only if the cache is on the list of caches, i.e. is reachable via mmu_notifier events. If a relevant mmu_notifier event occurs while the cache is "active" but not on the list, KVM will not acquire the cache's lock and so will not serailize the mmu_notifier event with active users and/or kvm_gpc_refresh(). A race between KVM_XEN_ATTR_TYPE_SHARED_INFO and KVM_XEN_HVM_EVTCHN_SEND can be exploited to trigger the bug. 1. Deactivate shinfo cache: kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO kvm_gpc_deactivate kvm_gpc_unmap gpc->valid = false gpc->khva = NULL gpc->active = false Result: active = false, valid = false 2. Cause cache refresh: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast kvm_gpc_check return -EWOULDBLOCK because !gpc->valid kvm_xen_set_evtchn_fast return -EWOULDBLOCK kvm_gpc_refresh hva_to_pfn_retry gpc->valid = true gpc->khva = not NULL Result: active = false, valid = true 3. Race ioctl KVM_XEN_HVM_EVTCHN_SEND against ioctl KVM_XEN_ATTR_TYPE_SHARED_INFO: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast read_lock gpc->lock kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO mutex_lock kvm->lock kvm_xen_shared_info_init kvm_gpc_activate gpc->khva = NULL kvm_gpc_check [ Check passes because gpc->valid is still true, even though gpc->khva is already NULL. ] shinfo = gpc->khva pending_bits = shinfo->evtchn_pending CRASH: test_and_set_bit(..., pending_bits)
CVE-2022-49883 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: smm: number of GPRs in the SMRAM image depends on the image format On 64 bit host, if the guest doesn't have X86_FEATURE_LM, KVM will access 16 gprs to 32-bit smram image, causing out-ouf-bound ram access. On 32 bit host, the rsm_load_state_64/enter_smm_save_state_64 is compiled out, thus access overflow can't happen.
CVE-2022-49884 1 Linux 1 Linux Kernel 2025-11-10 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: Initialize gfn_to_pfn_cache locks in dedicated helper Move the gfn_to_pfn_cache lock initialization to another helper and call the new helper during VM/vCPU creation. There are race conditions possible due to kvm_gfn_to_pfn_cache_init()'s ability to re-initialize the cache's locks. For example: a race between ioctl(KVM_XEN_HVM_EVTCHN_SEND) and kvm_gfn_to_pfn_cache_init() leads to a corrupted shinfo gpc lock. (thread 1) | (thread 2) | kvm_xen_set_evtchn_fast | read_lock_irqsave(&gpc->lock, ...) | | kvm_gfn_to_pfn_cache_init | rwlock_init(&gpc->lock) read_unlock_irqrestore(&gpc->lock, ...) | Rename "cache_init" and "cache_destroy" to activate+deactivate to avoid implying that the cache really is destroyed/freed. Note, there more races in the newly named kvm_gpc_activate() that will be addressed separately. [sean: call out that this is a bug fix]
CVE-2022-49886 1 Linux 1 Linux Kernel 2025-11-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/tdx: Panic on bad configs that #VE on "private" memory access All normal kernel memory is "TDX private memory". This includes everything from kernel stacks to kernel text. Handling exceptions on arbitrary accesses to kernel memory is essentially impossible because they can happen in horribly nasty places like kernel entry/exit. But, TDX hardware can theoretically _deliver_ a virtualization exception (#VE) on any access to private memory. But, it's not as bad as it sounds. TDX can be configured to never deliver these exceptions on private memory with a "TD attribute" called ATTR_SEPT_VE_DISABLE. The guest has no way to *set* this attribute, but it can check it. Ensure ATTR_SEPT_VE_DISABLE is set in early boot. panic() if it is unset. There is no sane way for Linux to run with this attribute clear so a panic() is appropriate. There's small window during boot before the check where kernel has an early #VE handler. But the handler is only for port I/O and will also panic() as soon as it sees any other #VE, such as a one generated by a private memory access. [ dhansen: Rewrite changelog and rebase on new tdx_parse_tdinfo(). Add Kirill's tested-by because I made changes since he wrote this. ]
CVE-2022-49893 1 Linux 1 Linux Kernel 2025-11-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cxl/region: Fix cxl_region leak, cleanup targets at region delete When a region is deleted any targets that have been previously assigned to that region hold references to it. Trigger those references to drop by detaching all targets at unregister_region() time. Otherwise that region object will leak as userspace has lost the ability to detach targets once region sysfs is torn down.
CVE-2022-49898 1 Linux 1 Linux Kernel 2025-11-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix tree mod log mishandling of reallocated nodes We have been seeing the following panic in production kernel BUG at fs/btrfs/tree-mod-log.c:677! invalid opcode: 0000 [#1] SMP RIP: 0010:tree_mod_log_rewind+0x1b4/0x200 RSP: 0000:ffffc9002c02f890 EFLAGS: 00010293 RAX: 0000000000000003 RBX: ffff8882b448c700 RCX: 0000000000000000 RDX: 0000000000008000 RSI: 00000000000000a7 RDI: ffff88877d831c00 RBP: 0000000000000002 R08: 000000000000009f R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000100c40 R12: 0000000000000001 R13: ffff8886c26d6a00 R14: ffff88829f5424f8 R15: ffff88877d831a00 FS: 00007fee1d80c780(0000) GS:ffff8890400c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fee1963a020 CR3: 0000000434f33002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: btrfs_get_old_root+0x12b/0x420 btrfs_search_old_slot+0x64/0x2f0 ? tree_mod_log_oldest_root+0x3d/0xf0 resolve_indirect_ref+0xfd/0x660 ? ulist_alloc+0x31/0x60 ? kmem_cache_alloc_trace+0x114/0x2c0 find_parent_nodes+0x97a/0x17e0 ? ulist_alloc+0x30/0x60 btrfs_find_all_roots_safe+0x97/0x150 iterate_extent_inodes+0x154/0x370 ? btrfs_search_path_in_tree+0x240/0x240 iterate_inodes_from_logical+0x98/0xd0 ? btrfs_search_path_in_tree+0x240/0x240 btrfs_ioctl_logical_to_ino+0xd9/0x180 btrfs_ioctl+0xe2/0x2ec0 ? __mod_memcg_lruvec_state+0x3d/0x280 ? do_sys_openat2+0x6d/0x140 ? kretprobe_dispatcher+0x47/0x70 ? kretprobe_rethook_handler+0x38/0x50 ? rethook_trampoline_handler+0x82/0x140 ? arch_rethook_trampoline_callback+0x3b/0x50 ? kmem_cache_free+0xfb/0x270 ? do_sys_openat2+0xd5/0x140 __x64_sys_ioctl+0x71/0xb0 do_syscall_64+0x2d/0x40 Which is this code in tree_mod_log_rewind() switch (tm->op) { case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: BUG_ON(tm->slot < n); This occurs because we replay the nodes in order that they happened, and when we do a REPLACE we will log a REMOVE_WHILE_FREEING for every slot, starting at 0. 'n' here is the number of items in this block, which in this case was 1, but we had 2 REMOVE_WHILE_FREEING operations. The actual root cause of this was that we were replaying operations for a block that shouldn't have been replayed. Consider the following sequence of events 1. We have an already modified root, and we do a btrfs_get_tree_mod_seq(). 2. We begin removing items from this root, triggering KEY_REPLACE for it's child slots. 3. We remove one of the 2 children this root node points to, thus triggering the root node promotion of the remaining child, and freeing this node. 4. We modify a new root, and re-allocate the above node to the root node of this other root. The tree mod log looks something like this logical 0 op KEY_REPLACE (slot 1) seq 2 logical 0 op KEY_REMOVE (slot 1) seq 3 logical 0 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 4 logical 4096 op LOG_ROOT_REPLACE (old logical 0) seq 5 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 1) seq 6 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 7 logical 0 op LOG_ROOT_REPLACE (old logical 8192) seq 8 >From here the bug is triggered by the following steps 1. Call btrfs_get_old_root() on the new_root. 2. We call tree_mod_log_oldest_root(btrfs_root_node(new_root)), which is currently logical 0. 3. tree_mod_log_oldest_root() calls tree_mod_log_search_oldest(), which gives us the KEY_REPLACE seq 2, and since that's not a LOG_ROOT_REPLACE we incorrectly believe that we don't have an old root, because we expect that the most recent change should be a LOG_ROOT_REPLACE. 4. Back in tree_mod_log_oldest_root() we don't have a LOG_ROOT_REPLACE, so we don't set old_root, we simply use our e ---truncated---
CVE-2022-49900 1 Linux 1 Linux Kernel 2025-11-10 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: piix4: Fix adapter not be removed in piix4_remove() In piix4_probe(), the piix4 adapter will be registered in: piix4_probe() piix4_add_adapters_sb800() / piix4_add_adapter() i2c_add_adapter() Based on the probed device type, piix4_add_adapters_sb800() or single piix4_add_adapter() will be called. For the former case, piix4_adapter_count is set as the number of adapters, while for antoher case it is not set and kept default *zero*. When piix4 is removed, piix4_remove() removes the adapters added in piix4_probe(), basing on the piix4_adapter_count value. Because the count is zero for the single adapter case, the adapter won't be removed and makes the sources allocated for adapter leaked, such as the i2c client and device. These sources can still be accessed by i2c or bus and cause problems. An easily reproduced case is that if a new adapter is registered, i2c will get the leaked adapter and try to call smbus_algorithm, which was already freed: Triggered by: rmmod i2c_piix4 && modprobe max31730 BUG: unable to handle page fault for address: ffffffffc053d860 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 3752 Comm: modprobe Tainted: G Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:i2c_default_probe (drivers/i2c/i2c-core-base.c:2259) i2c_core RSP: 0018:ffff888107477710 EFLAGS: 00000246 ... <TASK> i2c_detect (drivers/i2c/i2c-core-base.c:2302) i2c_core __process_new_driver (drivers/i2c/i2c-core-base.c:1336) i2c_core bus_for_each_dev (drivers/base/bus.c:301) i2c_for_each_dev (drivers/i2c/i2c-core-base.c:1823) i2c_core i2c_register_driver (drivers/i2c/i2c-core-base.c:1861) i2c_core do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... </TASK> ---[ end trace 0000000000000000 ]--- Fix this problem by correctly set piix4_adapter_count as 1 for the single adapter so it can be normally removed.
CVE-2025-63617 2025-11-10 N/A
ktg-mes before commit a484f96 (2025-07-03) has a fastjson deserialization vulnerability. This is because it uses a vulnerable version of fastjson and deserializes unsafe input data.
CVE-2025-63296 2025-11-10 N/A
KERUI K259 5MP Wi-Fi / Tuya Smart Security Camera firmware v33.53.87 contains a code execution vulnerability in its boot/update logic: during startup /usr/sbin/anyka_service.sh scans mounted TF/SD cards and, if /mnt/update.nor.sh is present, copies it to /tmp/net.sh and executes it as root.
CVE-2025-48878 2025-11-10 4.3 Medium
Combodo iTop is a web based IT service management tool. In versions on the 3.x branch prior to 3.2.2, an insecure direct object reference allows a user (e.g. with Service desk agent profile) to create a ModuleInstallation object when they shouldn't be able to do so. Version 3.2.2 fixes the issue.
CVE-2025-48065 2025-11-10 8.8 High
Combodo iTop is a web based IT service management tool. Versions prior to 2.7.13 and 3.2.2 are vulnerable to cross-site scripting when a field with an error contains malicious content. Versions 2.7.13 and 3.2.2 protect rendered HTML content.