CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
media: av7110: fix a spectre vulnerability
As warned by smatch:
drivers/staging/media/av7110/av7110_ca.c:270 dvb_ca_ioctl() warn: potential spectre issue 'av7110->ci_slot' [w] (local cap)
There is a spectre-related vulnerability at the code. Fix it. |
In the Linux kernel, the following vulnerability has been resolved:
net: arc: fix the device for dma_map_single/dma_unmap_single
The ndev->dev and pdev->dev aren't the same device, use ndev->dev.parent
which has dma_mask, ndev->dev.parent is just pdev->dev.
Or it would cause the following issue:
[ 39.933526] ------------[ cut here ]------------
[ 39.938414] WARNING: CPU: 1 PID: 501 at kernel/dma/mapping.c:149 dma_map_page_attrs+0x90/0x1f8 |
In the Linux kernel, the following vulnerability has been resolved:
bpf: sync_linked_regs() must preserve subreg_def
Range propagation must not affect subreg_def marks, otherwise the
following example is rewritten by verifier incorrectly when
BPF_F_TEST_RND_HI32 flag is set:
0: call bpf_ktime_get_ns call bpf_ktime_get_ns
1: r0 &= 0x7fffffff after verifier r0 &= 0x7fffffff
2: w1 = w0 rewrites w1 = w0
3: if w0 < 10 goto +0 --------------> r11 = 0x2f5674a6 (r)
4: r1 >>= 32 r11 <<= 32 (r)
5: r0 = r1 r1 |= r11 (r)
6: exit; if w0 < 0xa goto pc+0
r1 >>= 32
r0 = r1
exit
(or zero extension of w1 at (2) is missing for architectures that
require zero extension for upper register half).
The following happens w/o this patch:
- r0 is marked as not a subreg at (0);
- w1 is marked as subreg at (2);
- w1 subreg_def is overridden at (3) by copy_register_state();
- w1 is read at (5) but mark_insn_zext() does not mark (2)
for zero extension, because w1 subreg_def is not set;
- because of BPF_F_TEST_RND_HI32 flag verifier inserts random
value for hi32 bits of (2) (marked (r));
- this random value is read at (5). |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Align BR/EDR JUST_WORKS paring with LE
This aligned BR/EDR JUST_WORKS method with LE which since 92516cd97fd4
("Bluetooth: Always request for user confirmation for Just Works")
always request user confirmation with confirm_hint set since the
likes of bluetoothd have dedicated policy around JUST_WORKS method
(e.g. main.conf:JustWorksRepairing).
CVE: CVE-2024-8805 |
In the Linux kernel, the following vulnerability has been resolved:
xen/netfront: fix crash when removing device
When removing a netfront device directly after a suspend/resume cycle
it might happen that the queues have not been setup again, causing a
crash during the attempt to stop the queues another time.
Fix that by checking the queues are existing before trying to stop
them.
This is XSA-465 / CVE-2024-53240. |
In the Linux kernel, the following vulnerability has been resolved:
x86/xen: don't do PV iret hypercall through hypercall page
Instead of jumping to the Xen hypercall page for doing the iret
hypercall, directly code the required sequence in xen-asm.S.
This is done in preparation of no longer using hypercall page at all,
as it has shown to cause problems with speculation mitigations.
This is part of XSA-466 / CVE-2024-53241. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: Flush partial mappings in error case
If some remap_pfn_range() calls succeeded before one failed, we still have
buffer pages mapped into the userspace page tables when we drop the buffer
reference with comedi_buf_map_put(bm). The userspace mappings are only
cleaned up later in the mmap error path.
Fix it by explicitly flushing all mappings in our VMA on the error path.
See commit 79a61cc3fc04 ("mm: avoid leaving partial pfn mappings around in
error case"). |
In the Linux kernel, the following vulnerability has been resolved:
PCI: tegra194: Move controller cleanups to pex_ep_event_pex_rst_deassert()
Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF
deinit notify function pci_epc_deinit_notify() are called during the
execution of pex_ep_event_pex_rst_assert() i.e., when the host has asserted
PERST#. But quickly after this step, refclk will also be disabled by the
host.
All of the tegra194 endpoint SoCs supported as of now depend on the refclk
from the host for keeping the controller operational. Due to this
limitation, any access to the hardware registers in the absence of refclk
will result in a whole endpoint crash. Unfortunately, most of the
controller cleanups require accessing the hardware registers (like eDMA
cleanup performed in dw_pcie_ep_cleanup(), etc...). So these cleanup
functions can cause the crash in the endpoint SoC once host asserts PERST#.
One way to address this issue is by generating the refclk in the endpoint
itself and not depending on the host. But that is not always possible as
some of the endpoint designs do require the endpoint to consume refclk from
the host.
Thus, fix this crash by moving the controller cleanups to the start of
the pex_ep_event_pex_rst_deassert() function. This function is called
whenever the host has deasserted PERST# and it is guaranteed that the
refclk would be active at this point. So at the start of this function
(after enabling resources) the controller cleanup can be performed. Once
finished, rest of the code execution for PERST# deassert can continue as
usual. |
In the Linux kernel, the following vulnerability has been resolved:
PCI: qcom-ep: Move controller cleanups to qcom_pcie_perst_deassert()
Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF
deinit notify function pci_epc_deinit_notify() are called during the
execution of qcom_pcie_perst_assert() i.e., when the host has asserted
PERST#. But quickly after this step, refclk will also be disabled by the
host.
All of the Qcom endpoint SoCs supported as of now depend on the refclk from
the host for keeping the controller operational. Due to this limitation,
any access to the hardware registers in the absence of refclk will result
in a whole endpoint crash. Unfortunately, most of the controller cleanups
require accessing the hardware registers (like eDMA cleanup performed in
dw_pcie_ep_cleanup(), powering down MHI EPF etc...). So these cleanup
functions are currently causing the crash in the endpoint SoC once host
asserts PERST#.
One way to address this issue is by generating the refclk in the endpoint
itself and not depending on the host. But that is not always possible as
some of the endpoint designs do require the endpoint to consume refclk from
the host (as I was told by the Qcom engineers).
Thus, fix this crash by moving the controller cleanups to the start of
the qcom_pcie_perst_deassert() function. qcom_pcie_perst_deassert() is
called whenever the host has deasserted PERST# and it is guaranteed that
the refclk would be active at this point. So at the start of this function
(after enabling resources), the controller cleanup can be performed. Once
finished, rest of the code execution for PERST# deassert can continue as
usual. |
In the Linux kernel, the following vulnerability has been resolved:
sh: cpuinfo: Fix a warning for CONFIG_CPUMASK_OFFSTACK
When CONFIG_CPUMASK_OFFSTACK and CONFIG_DEBUG_PER_CPU_MAPS are selected,
cpu_max_bits_warn() generates a runtime warning similar as below when
showing /proc/cpuinfo. Fix this by using nr_cpu_ids (the runtime limit)
instead of NR_CPUS to iterate CPUs.
[ 3.052463] ------------[ cut here ]------------
[ 3.059679] WARNING: CPU: 3 PID: 1 at include/linux/cpumask.h:108 show_cpuinfo+0x5e8/0x5f0
[ 3.070072] Modules linked in: efivarfs autofs4
[ 3.076257] CPU: 0 PID: 1 Comm: systemd Not tainted 5.19-rc5+ #1052
[ 3.099465] Stack : 9000000100157b08 9000000000f18530 9000000000cf846c 9000000100154000
[ 3.109127] 9000000100157a50 0000000000000000 9000000100157a58 9000000000ef7430
[ 3.118774] 90000001001578e8 0000000000000040 0000000000000020 ffffffffffffffff
[ 3.128412] 0000000000aaaaaa 1ab25f00eec96a37 900000010021de80 900000000101c890
[ 3.138056] 0000000000000000 0000000000000000 0000000000000000 0000000000aaaaaa
[ 3.147711] ffff8000339dc220 0000000000000001 0000000006ab4000 0000000000000000
[ 3.157364] 900000000101c998 0000000000000004 9000000000ef7430 0000000000000000
[ 3.167012] 0000000000000009 000000000000006c 0000000000000000 0000000000000000
[ 3.176641] 9000000000d3de08 9000000001639390 90000000002086d8 00007ffff0080286
[ 3.186260] 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c
[ 3.195868] ...
[ 3.199917] Call Trace:
[ 3.203941] [<90000000002086d8>] show_stack+0x38/0x14c
[ 3.210666] [<9000000000cf846c>] dump_stack_lvl+0x60/0x88
[ 3.217625] [<900000000023d268>] __warn+0xd0/0x100
[ 3.223958] [<9000000000cf3c90>] warn_slowpath_fmt+0x7c/0xcc
[ 3.231150] [<9000000000210220>] show_cpuinfo+0x5e8/0x5f0
[ 3.238080] [<90000000004f578c>] seq_read_iter+0x354/0x4b4
[ 3.245098] [<90000000004c2e90>] new_sync_read+0x17c/0x1c4
[ 3.252114] [<90000000004c5174>] vfs_read+0x138/0x1d0
[ 3.258694] [<90000000004c55f8>] ksys_read+0x70/0x100
[ 3.265265] [<9000000000cfde9c>] do_syscall+0x7c/0x94
[ 3.271820] [<9000000000202fe4>] handle_syscall+0xc4/0x160
[ 3.281824] ---[ end trace 8b484262b4b8c24c ]--- |
In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix ordering of qlen adjustment
Changes to sch->q.qlen around qdisc_tree_reduce_backlog() need to happen
_before_ a call to said function because otherwise it may fail to notify
parent qdiscs when the child is about to become empty. |
In the Linux kernel, the following vulnerability has been resolved:
nfs/blocklayout: Don't attempt unregister for invalid block device
Since commit d869da91cccb ("nfs/blocklayout: Fix premature PR key
unregistration") an unmount of a pNFS SCSI layout-enabled NFS may
dereference a NULL block_device in:
bl_unregister_scsi+0x16/0xe0 [blocklayoutdriver]
bl_free_device+0x70/0x80 [blocklayoutdriver]
bl_free_deviceid_node+0x12/0x30 [blocklayoutdriver]
nfs4_put_deviceid_node+0x60/0xc0 [nfsv4]
nfs4_deviceid_purge_client+0x132/0x190 [nfsv4]
unset_pnfs_layoutdriver+0x59/0x60 [nfsv4]
nfs4_destroy_server+0x36/0x70 [nfsv4]
nfs_free_server+0x23/0xe0 [nfs]
deactivate_locked_super+0x30/0xb0
cleanup_mnt+0xba/0x150
task_work_run+0x59/0x90
syscall_exit_to_user_mode+0x217/0x220
do_syscall_64+0x8e/0x160
This happens because even though we were able to create the
nfs4_deviceid_node, the lookup for the device was unable to attach the
block device to the pnfs_block_dev.
If we never found a block device to register, we can avoid this case with
the PNFS_BDEV_REGISTERED flag. Move the deref behind the test for the
flag. |
In the Linux kernel, the following vulnerability has been resolved:
ubi: fastmap: Fix duplicate slab cache names while attaching
Since commit 4c39529663b9 ("slab: Warn on duplicate cache names when
DEBUG_VM=y"), the duplicate slab cache names can be detected and a
kernel WARNING is thrown out.
In UBI fast attaching process, alloc_ai() could be invoked twice
with the same slab cache name 'ubi_aeb_slab_cache', which will trigger
following warning messages:
kmem_cache of name 'ubi_aeb_slab_cache' already exists
WARNING: CPU: 0 PID: 7519 at mm/slab_common.c:107
__kmem_cache_create_args+0x100/0x5f0
Modules linked in: ubi(+) nandsim [last unloaded: nandsim]
CPU: 0 UID: 0 PID: 7519 Comm: modprobe Tainted: G 6.12.0-rc2
RIP: 0010:__kmem_cache_create_args+0x100/0x5f0
Call Trace:
__kmem_cache_create_args+0x100/0x5f0
alloc_ai+0x295/0x3f0 [ubi]
ubi_attach+0x3c3/0xcc0 [ubi]
ubi_attach_mtd_dev+0x17cf/0x3fa0 [ubi]
ubi_init+0x3fb/0x800 [ubi]
do_init_module+0x265/0x7d0
__x64_sys_finit_module+0x7a/0xc0
The problem could be easily reproduced by loading UBI device by fastmap
with CONFIG_DEBUG_VM=y.
Fix it by using different slab names for alloc_ai() callers. |
In the Linux kernel, the following vulnerability has been resolved:
smb: During unmount, ensure all cached dir instances drop their dentry
The unmount process (cifs_kill_sb() calling close_all_cached_dirs()) can
race with various cached directory operations, which ultimately results
in dentries not being dropped and these kernel BUGs:
BUG: Dentry ffff88814f37e358{i=1000000000080,n=/} still in use (2) [unmount of cifs cifs]
VFS: Busy inodes after unmount of cifs (cifs)
------------[ cut here ]------------
kernel BUG at fs/super.c:661!
This happens when a cfid is in the process of being cleaned up when, and
has been removed from the cfids->entries list, including:
- Receiving a lease break from the server
- Server reconnection triggers invalidate_all_cached_dirs(), which
removes all the cfids from the list
- The laundromat thread decides to expire an old cfid.
To solve these problems, dropping the dentry is done in queued work done
in a newly-added cfid_put_wq workqueue, and close_all_cached_dirs()
flushes that workqueue after it drops all the dentries of which it's
aware. This is a global workqueue (rather than scoped to a mount), but
the queued work is minimal.
The final cleanup work for cleaning up a cfid is performed via work
queued in the serverclose_wq workqueue; this is done separate from
dropping the dentries so that close_all_cached_dirs() doesn't block on
any server operations.
Both of these queued works expect to invoked with a cfid reference and
a tcon reference to avoid those objects from being freed while the work
is ongoing.
While we're here, add proper locking to close_all_cached_dirs(), and
locking around the freeing of cfid->dentry. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to account dirty data in __get_secs_required()
It will trigger system panic w/ testcase in [1]:
------------[ cut here ]------------
kernel BUG at fs/f2fs/segment.c:2752!
RIP: 0010:new_curseg+0xc81/0x2110
Call Trace:
f2fs_allocate_data_block+0x1c91/0x4540
do_write_page+0x163/0xdf0
f2fs_outplace_write_data+0x1aa/0x340
f2fs_do_write_data_page+0x797/0x2280
f2fs_write_single_data_page+0x16cd/0x2190
f2fs_write_cache_pages+0x994/0x1c80
f2fs_write_data_pages+0x9cc/0xea0
do_writepages+0x194/0x7a0
filemap_fdatawrite_wbc+0x12b/0x1a0
__filemap_fdatawrite_range+0xbb/0xf0
file_write_and_wait_range+0xa1/0x110
f2fs_do_sync_file+0x26f/0x1c50
f2fs_sync_file+0x12b/0x1d0
vfs_fsync_range+0xfa/0x230
do_fsync+0x3d/0x80
__x64_sys_fsync+0x37/0x50
x64_sys_call+0x1e88/0x20d0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The root cause is if checkpoint_disabling and lfs_mode are both on,
it will trigger OPU for all overwritten data, it may cost more free
segment than expected, so f2fs must account those data correctly to
calculate cosumed free segments later, and return ENOSPC earlier to
avoid run out of free segment during block allocation.
[1] https://lore.kernel.org/fstests/20241015025106.3203676-1-chao@kernel.org/ |
In the Linux kernel, the following vulnerability has been resolved:
um: vector: Do not use drvdata in release
The drvdata is not available in release. Let's just use container_of()
to get the vector_device instance. Otherwise, removing a vector device
will result in a crash:
RIP: 0033:vector_device_release+0xf/0x50
RSP: 00000000e187bc40 EFLAGS: 00010202
RAX: 0000000060028f61 RBX: 00000000600f1baf RCX: 00000000620074e0
RDX: 000000006220b9c0 RSI: 0000000060551c80 RDI: 0000000000000000
RBP: 00000000e187bc50 R08: 00000000603ad594 R09: 00000000e187bb70
R10: 000000000000135a R11: 00000000603ad422 R12: 00000000623ae028
R13: 000000006287a200 R14: 0000000062006d30 R15: 00000000623700b6
Kernel panic - not syncing: Segfault with no mm
CPU: 0 UID: 0 PID: 16 Comm: kworker/0:1 Not tainted 6.12.0-rc6-g59b723cd2adb #1
Workqueue: events mc_work_proc
Stack:
60028f61 623ae028 e187bc80 60276fcd
6220b9c0 603f5820 623ae028 00000000
e187bcb0 603a2bcd 623ae000 62370010
Call Trace:
[<60028f61>] ? vector_device_release+0x0/0x50
[<60276fcd>] device_release+0x70/0xba
[<603a2bcd>] kobject_put+0xba/0xe7
[<60277265>] put_device+0x19/0x1c
[<60281266>] platform_device_put+0x26/0x29
[<60281e5f>] platform_device_unregister+0x2c/0x2e
[<60029422>] vector_remove+0x52/0x58
[<60031316>] ? mconsole_reply+0x0/0x50
[<600310c8>] mconsole_remove+0x160/0x1cc
[<603b19f4>] ? strlen+0x0/0x15
[<60066611>] ? __dequeue_entity+0x1a9/0x206
[<600666a7>] ? set_next_entity+0x39/0x63
[<6006666e>] ? set_next_entity+0x0/0x63
[<60038fa6>] ? um_set_signals+0x0/0x43
[<6003070c>] mc_work_proc+0x77/0x91
[<60057664>] process_scheduled_works+0x1b3/0x2dd
[<60055f32>] ? assign_work+0x0/0x58
[<60057f0a>] worker_thread+0x1e9/0x293
[<6005406f>] ? set_pf_worker+0x0/0x64
[<6005d65d>] ? arch_local_irq_save+0x0/0x2d
[<6005d748>] ? kthread_exit+0x0/0x3a
[<60057d21>] ? worker_thread+0x0/0x293
[<6005dbf1>] kthread+0x126/0x12b
[<600219c5>] new_thread_handler+0x85/0xb6 |
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Don't retire aborted MMIO instruction
Returning an abort to the guest for an unsupported MMIO access is a
documented feature of the KVM UAPI. Nevertheless, it's clear that this
plumbing has seen limited testing, since userspace can trivially cause a
WARN in the MMIO return:
WARNING: CPU: 0 PID: 30558 at arch/arm64/include/asm/kvm_emulate.h:536 kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536
Call trace:
kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536
kvm_arch_vcpu_ioctl_run+0x98/0x15b4 arch/arm64/kvm/arm.c:1133
kvm_vcpu_ioctl+0x75c/0xa78 virt/kvm/kvm_main.c:4487
__do_sys_ioctl fs/ioctl.c:51 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__arm64_sys_ioctl+0x14c/0x1c8 fs/ioctl.c:893
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x1e0/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x38/0x68 arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x90/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
The splat is complaining that KVM is advancing PC while an exception is
pending, i.e. that KVM is retiring the MMIO instruction despite a
pending synchronous external abort. Womp womp.
Fix the glaring UAPI bug by skipping over all the MMIO emulation in
case there is a pending synchronous exception. Note that while userspace
is capable of pending an asynchronous exception (SError, IRQ, or FIQ),
it is still safe to retire the MMIO instruction in this case as (1) they
are by definition asynchronous, and (2) KVM relies on hardware support
for pending/delivering these exceptions instead of the software state
machine for advancing PC. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Get rid of userspace_irqchip_in_use
Improper use of userspace_irqchip_in_use led to syzbot hitting the
following WARN_ON() in kvm_timer_update_irq():
WARNING: CPU: 0 PID: 3281 at arch/arm64/kvm/arch_timer.c:459
kvm_timer_update_irq+0x21c/0x394
Call trace:
kvm_timer_update_irq+0x21c/0x394 arch/arm64/kvm/arch_timer.c:459
kvm_timer_vcpu_reset+0x158/0x684 arch/arm64/kvm/arch_timer.c:968
kvm_reset_vcpu+0x3b4/0x560 arch/arm64/kvm/reset.c:264
kvm_vcpu_set_target arch/arm64/kvm/arm.c:1553 [inline]
kvm_arch_vcpu_ioctl_vcpu_init arch/arm64/kvm/arm.c:1573 [inline]
kvm_arch_vcpu_ioctl+0x112c/0x1b3c arch/arm64/kvm/arm.c:1695
kvm_vcpu_ioctl+0x4ec/0xf74 virt/kvm/kvm_main.c:4658
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__arm64_sys_ioctl+0x108/0x184 fs/ioctl.c:893
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x78/0x1b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0xe8/0x1b0 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x40/0x50 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x14c arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
The following sequence led to the scenario:
- Userspace creates a VM and a vCPU.
- The vCPU is initialized with KVM_ARM_VCPU_PMU_V3 during
KVM_ARM_VCPU_INIT.
- Without any other setup, such as vGIC or vPMU, userspace issues
KVM_RUN on the vCPU. Since the vPMU is requested, but not setup,
kvm_arm_pmu_v3_enable() fails in kvm_arch_vcpu_run_pid_change().
As a result, KVM_RUN returns after enabling the timer, but before
incrementing 'userspace_irqchip_in_use':
kvm_arch_vcpu_run_pid_change()
ret = kvm_arm_pmu_v3_enable()
if (!vcpu->arch.pmu.created)
return -EINVAL;
if (ret)
return ret;
[...]
if (!irqchip_in_kernel(kvm))
static_branch_inc(&userspace_irqchip_in_use);
- Userspace ignores the error and issues KVM_ARM_VCPU_INIT again.
Since the timer is already enabled, control moves through the
following flow, ultimately hitting the WARN_ON():
kvm_timer_vcpu_reset()
if (timer->enabled)
kvm_timer_update_irq()
if (!userspace_irqchip())
ret = kvm_vgic_inject_irq()
ret = vgic_lazy_init()
if (unlikely(!vgic_initialized(kvm)))
if (kvm->arch.vgic.vgic_model !=
KVM_DEV_TYPE_ARM_VGIC_V2)
return -EBUSY;
WARN_ON(ret);
Theoretically, since userspace_irqchip_in_use's functionality can be
simply replaced by '!irqchip_in_kernel()', get rid of the static key
to avoid the mismanagement, which also helps with the syzbot issue. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: fix bounds checker error in nl80211_parse_sched_scan
The channels array in the cfg80211_scan_request has a __counted_by
attribute attached to it, which points to the n_channels variable. This
attribute is used in bounds checking, and if it is not set before the
array is filled, then the bounds sanitizer will issue a warning or a
kernel panic if CONFIG_UBSAN_TRAP is set.
This patch sets the size of allocated memory as the initial value for
n_channels. It is updated with the actual number of added elements after
the array is filled. |
In the Linux kernel, the following vulnerability has been resolved:
netlink: fix false positive warning in extack during dumps
Commit under fixes extended extack reporting to dumps.
It works under normal conditions, because extack errors are
usually reported during ->start() or the first ->dump(),
it's quite rare that the dump starts okay but fails later.
If the dump does fail later, however, the input skb will
already have the initiating message pulled, so checking
if bad attr falls within skb->data will fail.
Switch the check to using nlh, which is always valid.
syzbot found a way to hit that scenario by filling up
the receive queue. In this case we initiate a dump
but don't call ->dump() until there is read space for
an skb.
WARNING: CPU: 1 PID: 5845 at net/netlink/af_netlink.c:2210 netlink_ack_tlv_fill+0x1a8/0x560 net/netlink/af_netlink.c:2209
RIP: 0010:netlink_ack_tlv_fill+0x1a8/0x560 net/netlink/af_netlink.c:2209
Call Trace:
<TASK>
netlink_dump_done+0x513/0x970 net/netlink/af_netlink.c:2250
netlink_dump+0x91f/0xe10 net/netlink/af_netlink.c:2351
netlink_recvmsg+0x6bb/0x11d0 net/netlink/af_netlink.c:1983
sock_recvmsg_nosec net/socket.c:1051 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1073
__sys_recvfrom+0x246/0x3d0 net/socket.c:2267
__do_sys_recvfrom net/socket.c:2285 [inline]
__se_sys_recvfrom net/socket.c:2281 [inline]
__x64_sys_recvfrom+0xde/0x100 net/socket.c:2281
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff37dd17a79 |