| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The JTAG interface of Wattsense Bridge devices can be accessed with physical access to the PCB. After connecting to the interface, full access to the device is possible. This enables an attacker to extract information, modify and debug the device's firmware. All known versions are affected. |
| Rack provides an interface for developing web applications in Ruby. Prior to versions 2.2.11, 3.0.12, and 3.1.10, Rack::CommonLogger can be exploited by crafting input that includes newline characters to manipulate log entries. The supplied proof-of-concept demonstrates injecting malicious content into logs. When a user provides the authorization credentials via Rack::Auth::Basic, if success, the username will be put in env['REMOTE_USER'] and later be used by Rack::CommonLogger for logging purposes. The issue occurs when a server intentionally or unintentionally allows a user creation with the username contain CRLF and white space characters, or the server just want to log every login attempts. If an attacker enters a username with CRLF character, the logger will log the malicious username with CRLF characters into the logfile. Attackers can break log formats or insert fraudulent entries, potentially obscuring real activity or injecting malicious data into log files. Versions 2.2.11, 3.0.12, and 3.1.10 contain a fix. |
| The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash. |
| The researcher is showing that due to the way the SNMP trap log is parsed, an attacker can craft an SNMP trap with additional lines of information and have forged data show in the Zabbix UI. This attack requires SNMP auth to be off and/or the attacker to know the community/auth details. The attack requires an SNMP item to be configured as text on the target host. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: Fix Virtual Memory mapping boundaries calculation
Calculating the size of the mapped area as the lesser value
between the requested size and the actual size does not consider
the partial mapping offset. This can cause page fault access.
Fix the calculation of the starting and ending addresses, the
total size is now deduced from the difference between the end and
start addresses.
Additionally, the calculations have been rewritten in a clearer
and more understandable form.
[Joonas: Add Requires: tag]
Requires: 60a2066c5005 ("drm/i915/gem: Adjust vma offset for framebuffer mmap offset")
(cherry picked from commit 97b6784753da06d9d40232328efc5c5367e53417) |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: strict bound check before memcmp in ocfs2_xattr_find_entry()
xattr in ocfs2 maybe 'non-indexed', which saved with additional space
requested. It's better to check if the memory is out of bound before
memcmp, although this possibility mainly comes from crafted poisonous
images. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: add bounds checking to ocfs2_check_dir_entry()
This adds sanity checks for ocfs2_dir_entry to make sure all members of
ocfs2_dir_entry don't stray beyond valid memory region. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: don't allow mapping the MMIO HDP page with large pages
We don't get the right offset in that case. The GPU has
an unused 4K area of the register BAR space into which you can
remap registers. We remap the HDP flush registers into this
space to allow userspace (CPU or GPU) to flush the HDP when it
updates VRAM. However, on systems with >4K pages, we end up
exposing PAGE_SIZE of MMIO space. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: fix UBSAN warning in kv_dpm.c
Adds bounds check for sumo_vid_mapping_entry. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Enforce hcall result buffer validity and size
plpar_hcall(), plpar_hcall9(), and related functions expect callers to
provide valid result buffers of certain minimum size. Currently this
is communicated only through comments in the code and the compiler has
no idea.
For example, if I write a bug like this:
long retbuf[PLPAR_HCALL_BUFSIZE]; // should be PLPAR_HCALL9_BUFSIZE
plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf, ...);
This compiles with no diagnostics emitted, but likely results in stack
corruption at runtime when plpar_hcall9() stores results past the end
of the array. (To be clear this is a contrived example and I have not
found a real instance yet.)
To make this class of error less likely, we can use explicitly-sized
array parameters instead of pointers in the declarations for the hcall
APIs. When compiled with -Warray-bounds[1], the code above now
provokes a diagnostic like this:
error: array argument is too small;
is of size 32, callee requires at least 72 [-Werror,-Warray-bounds]
60 | plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf,
| ^ ~~~~~~
[1] Enabled for LLVM builds but not GCC for now. See commit
0da6e5fd6c37 ("gcc: disable '-Warray-bounds' for gcc-13 too") and
related changes. |
| In the Linux kernel, the following vulnerability has been resolved:
vmci: prevent speculation leaks by sanitizing event in event_deliver()
Coverity spotted that event_msg is controlled by user-space,
event_msg->event_data.event is passed to event_deliver() and used
as an index without sanitization.
This change ensures that the event index is sanitized to mitigate any
possibility of speculative information leaks.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc.
Only compile tested, no access to HW. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix log recovery buffer allocation for the legacy h_size fixup
Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by
mkfs") added a fixup for incorrect h_size values used for the initial
umount record in old xfsprogs versions. Later commit 0c771b99d6c9
("xfs: clean up calculation of LR header blocks") cleaned up the log
reover buffer calculation, but stoped using the fixed up h_size value
to size the log recovery buffer, which can lead to an out of bounds
access when the incorrect h_size does not come from the old mkfs
tool, but a fuzzer.
Fix this by open coding xlog_logrec_hblks and taking the fixed h_size
into account for this calculation. |
| A vulnerability was found in SQLite SQLite3 up to 3.43.0 and classified as critical. This issue affects the function sessionReadRecord of the file ext/session/sqlite3session.c of the component make alltest Handler. The manipulation leads to heap-based buffer overflow. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-248999. |
| A vulnerbility was found in OpenSC. This security flaw cause a buffer overrun vulnerability in pkcs15 cardos_have_verifyrc_package. The attacker can supply a smart card package with malformed ASN1 context. The cardos_have_verifyrc_package function scans the ASN1 buffer for 2 tags, where remaining length is wrongly caculated due to moved starting pointer. This leads to possible heap-based buffer oob read. In cases where ASAN is enabled while compiling this causes a crash. Further info leak or more damage is possible. |
| A vulnerability was found in PHP where setting the environment variable PHP_CLI_SERVER_WORKERS to a large value leads to a heap buffer overflow. |
| A flaw was found in the bash package, where a heap-buffer overflow can occur in valid parameter_transform. This issue may lead to memory problems. |
| A vulnerability was found in Exim and classified as problematic. This issue affects some unknown processing of the component Regex Handler. The manipulation leads to use after free. The name of the patch is 4e9ed49f8f12eb331b29bd5b6dc3693c520fddc2. It is recommended to apply a patch to fix this issue. The identifier VDB-211073 was assigned to this vulnerability. |
| Stack buffer overflow issues were found in Opensc before version 0.22.0 in various places that could potentially crash programs using the library. |
| Heap buffer overflow issues were found in Opensc before version 0.22.0 in pkcs15-oberthur.c that could potentially crash programs using the library. |
| The CIL compiler in SELinux 3.2 has a heap-based buffer over-read in ebitmap_match_any (called indirectly from cil_check_neverallow). This occurs because there is sometimes a lack of checks for invalid statements in an optional block. |