| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| MariaDB v10.5 was discovered to contain a remote code execution (RCE) vulnerability via UDF Code in a Shared Object File, followed by a "create function" statement. NOTE: this is disputed by the MariaDB Foundation because no privilege boundary is crossed. |
| An Improper Check for Unusual or
Exceptional Conditions vulnerability in Brocade Fabric OS before 9.2.2.a
could allow an authenticated, network-based attacker to cause a
Denial-of-Service (DoS).
The
vulnerability is encountered when supportsave is invoked remotely,
using ssh command or SANnav inline ssh, and the corresponding ssh
session is terminated with Control C (^c ) before supportsave
completion.
This issue affects Brocade Fabric OS 9.0.0 through 9.2.2 |
| OP-TEE is a Trusted Execution Environment (TEE) designed as companion to a non-secure Linux kernel running on Arm; Cortex-A cores using the TrustZone technology. In version 4.5.0, using a specially crafted tee-supplicant binary running in REE userspace, an attacker can trigger a panic in a TA that uses the libutee Secure Storage API. Many functions in libutee, specifically those which make up the Secure Storage API, will panic if a system call returns an unexpected return code. This behavior is mandated by the TEE Internal Core API specification. However, in OP-TEE’s implementation, return codes of secure storage operations are passed through unsanitized from the REE tee-supplicant, through the Linux kernel tee-driver, through the OP-TEE kernel, back to libutee. Thus, an attacker with access to REE userspace, and the ability to stop tee-supplicant and replace it with their own process (generally trivial for a root user, and depending on the way permissions are set up, potentially available even to less privileged users) can run a malicious tee-supplicant process that responds to storage requests with unexpected response codes, triggering a panic in the requesting TA. This is particularly dangerous for TAs built with `TA_FLAG_SINGLE_INSTANCE` (corresponding to `gpd.ta.singleInstance` and `TA_FLAG_INSTANCE_KEEP_ALIVE` (corresponding to `gpd.ta.keepAlive`). The behavior of these TAs may depend on memory that is preserved between sessions, and the ability of an attacker to panic the TA and reload it with a clean memory space can compromise the behavior of those TAs. A critical example of this is the optee_ftpm TA. It uses the kept alive memory to hold PCR values, which crucially must be non-resettable. An attacker who can trigger a panic in the fTPM TA can reset the PCRs, and then extend them PCRs with whatever they choose, falsifying boot measurements, accessing sealed data, and potentially more. The impact of this issue depends significantly on the behavior of affected TAs. For some, it could manifest as a denial of service, while for others, like the fTPM TA, it can result in the disclosure of sensitive data. Anyone running the fTPM TA is affected, but similar attacks may be possible on other TAs that leverage the Secure Storage API. A fix is available in commit 941a58d78c99c4754fbd4ec3079ec9e1d596af8f. |
| A vulnerability has been identified in RUGGEDCOM i800 (All versions), RUGGEDCOM i801 (All versions), RUGGEDCOM i802 (All versions), RUGGEDCOM i803 (All versions), RUGGEDCOM M2100 (All versions), RUGGEDCOM M2200 (All versions), RUGGEDCOM M969 (All versions), RUGGEDCOM RMC30 (All versions), RUGGEDCOM RMC8388 V4.X (All versions), RUGGEDCOM RMC8388 V5.X (All versions < V5.10.0), RUGGEDCOM RP110 (All versions), RUGGEDCOM RS1600 (All versions), RUGGEDCOM RS1600F (All versions), RUGGEDCOM RS1600T (All versions), RUGGEDCOM RS400 (All versions), RUGGEDCOM RS401 (All versions), RUGGEDCOM RS416 (All versions), RUGGEDCOM RS416P (All versions), RUGGEDCOM RS416Pv2 V4.X (All versions), RUGGEDCOM RS416Pv2 V5.X (All versions < V5.10.0), RUGGEDCOM RS416v2 V4.X (All versions), RUGGEDCOM RS416v2 V5.X (All versions < V5.10.0), RUGGEDCOM RS8000 (All versions), RUGGEDCOM RS8000A (All versions), RUGGEDCOM RS8000H (All versions), RUGGEDCOM RS8000T (All versions), RUGGEDCOM RS900 (All versions), RUGGEDCOM RS900 (32M) V4.X (All versions), RUGGEDCOM RS900 (32M) V5.X (All versions < V5.10.0), RUGGEDCOM RS900G (All versions), RUGGEDCOM RS900G (32M) V4.X (All versions), RUGGEDCOM RS900G (32M) V5.X (All versions < V5.10.0), RUGGEDCOM RS900GP (All versions), RUGGEDCOM RS900L (All versions), RUGGEDCOM RS900M-GETS-C01 (All versions), RUGGEDCOM RS900M-GETS-XX (All versions), RUGGEDCOM RS900M-STND-C01 (All versions), RUGGEDCOM RS900M-STND-XX (All versions), RUGGEDCOM RS900W (All versions), RUGGEDCOM RS910 (All versions), RUGGEDCOM RS910L (All versions), RUGGEDCOM RS910W (All versions), RUGGEDCOM RS920L (All versions), RUGGEDCOM RS920W (All versions), RUGGEDCOM RS930L (All versions), RUGGEDCOM RS930W (All versions), RUGGEDCOM RS940G (All versions), RUGGEDCOM RS969 (All versions), RUGGEDCOM RSG2100 (All versions), RUGGEDCOM RSG2100 (32M) V4.X (All versions), RUGGEDCOM RSG2100 (32M) V5.X (All versions < V5.10.0), RUGGEDCOM RSG2100P (All versions), RUGGEDCOM RSG2100P (32M) V4.X (All versions), RUGGEDCOM RSG2100P (32M) V5.X (All versions < V5.10.0), RUGGEDCOM RSG2200 (All versions), RUGGEDCOM RSG2288 V4.X (All versions), RUGGEDCOM RSG2288 V5.X (All versions < V5.10.0), RUGGEDCOM RSG2300 V4.X (All versions), RUGGEDCOM RSG2300 V5.X (All versions < V5.10.0), RUGGEDCOM RSG2300P V4.X (All versions), RUGGEDCOM RSG2300P V5.X (All versions < V5.10.0), RUGGEDCOM RSG2488 V4.X (All versions), RUGGEDCOM RSG2488 V5.X (All versions < V5.10.0), RUGGEDCOM RSG907R (All versions < V5.10.0), RUGGEDCOM RSG908C (All versions < V5.10.0), RUGGEDCOM RSG909R (All versions < V5.10.0), RUGGEDCOM RSG910C (All versions < V5.10.0), RUGGEDCOM RSG920P V4.X (All versions), RUGGEDCOM RSG920P V5.X (All versions < V5.10.0), RUGGEDCOM RSL910 (All versions < V5.10.0), RUGGEDCOM RST2228 (All versions < V5.10.0), RUGGEDCOM RST2228P (All versions < V5.10.0), RUGGEDCOM RST916C (All versions < V5.10.0), RUGGEDCOM RST916P (All versions < V5.10.0). Affected devices do not properly handle malformed TLS handshake messages. This could allow an attacker with network access to the webserver to cause a denial of service resulting in the web server and the device to crash. |
| A vulnerability in the CLI of Cisco IOS XE Software could allow an authenticated, local attacker with privilege level 15 to elevate privileges to root on the underlying operating system of an affected device.
This vulnerability is due to insufficient input validation when processing specific configuration commands. An attacker could exploit this vulnerability by including crafted input in specific configuration commands. A successful exploit could allow the attacker to elevate privileges to root on the underlying operating system of an affected device. The security impact rating (SIR) of this advisory has been raised to High because an attacker could gain access to the underlying operating system of the affected device and perform potentially undetected actions.
Note: The attacker must have privileges to enter configuration mode on the affected device. This is usually referred to as privilege level 15. |
| ModSecurity 3.x before 3.0.4 mishandles key-value pair parsing, as demonstrated by a "string index out of range" error and worker-process crash for a "Cookie: =abc" header. |
| IBM i 7.4 and 7.5 is vulnerable to a database access denial of service caused by a bypass of a database capabilities restriction check. A privileged bad actor can remove or otherwise impact database infrastructure files resulting in incorrect behavior of software products that rely upon the database. |
| ethereum is a common ethereum structs for Rust. Prior to ethereum crate v0.18.0, signature malleability (according to EIP-2) was only checked for "legacy" transactions, but not for EIP-2930, EIP-1559 and EIP-7702 transactions. This is a specification deviation. The signature malleability itself is not a security issue and not as high of a risk if the ethereum crate is used on a single-implementation blockchain. This issue has been patched in version v0.18.0. A workaround for this issue involves manually checking transaction malleability outside of the crate, however upgrading is recommended. |
| A specific flaw exists within the Bluetooth stack of the MIB3 infotainment system. The issue results from the disabled abortion flag eventually leading to bypassing assertion functions.
The vulnerability was originally discovered in Skoda Superb III car with MIB3 infotainment unit OEM part number 3V0035820. The list of affected MIB3 OEM part numbers is provided in the referenced resources. |
| cJSON v1.7.17 was discovered to contain a segmentation violation, which can trigger through the second parameter of function cJSON_SetValuestring at cJSON.c. |
| An authenticated user with file access privilege via FTP access can cause the Relion 670/650 and SAM600-IO series device to reboot due to improper disk space management. |
| A flaw in handling fullscreen transitions may have inadvertently caused the application to become stuck in fullscreen mode when a modal dialog was opened during the transition. This issue left users unable to exit fullscreen mode using standard actions like pressing "Esc" or accessing right-click menus, resulting in a disrupted browsing experience until the browser is restarted.
*This bug only affects the application when running on macOS. Other operating systems are unaffected.* This vulnerability affects Firefox < 133, Firefox ESR < 128.5, Thunderbird < 133, and Thunderbird < 128.5. |
| Hydra is a layer-two scalability solution for Cardano. Prior to version 0.22.0, the process assumes L1 event finality and does not consider failed transactions. Currently, Cardano L1 is monitored for certain events which are necessary for state progression. At the moment, Hydra considers those events as finalized as soon as they are recognized by the node participants making such transactions the target of re-org attacks. The system does not currently consider the fact that failed transactions on the Cardano L1 can indeed appear in blocks because these transactions are so infrequent. This issue has been patched in version 0.22.0. |
| Nullsoft Scriptable Install System (NSIS) before 3.11 on Windows allows local users to escalate privileges to SYSTEM during an installation, because the temporary plugins directory is created under %WINDIR%\temp and unprivileged users can place a crafted executable file by winning a race condition. This occurs because EW_CREATEDIR does not always set the CreateRestrictedDirectory error flag. |
| An issue was discovered in Artifex Ghostscript before 10.03.1. psi/zmisc1.c, when SAFER mode is used, allows eexec seeds other than the Type 1 standard. |
| An issue was discovered in Contiki-NG tinyDTLS through master branch 53a0d97. DTLS servers allow remote attackers to reuse the same epoch number within two times the TCP maximum segment lifetime, which is prohibited in RFC6347. This vulnerability allows remote attackers to obtain sensitive application (data of connected clients). |
| An assertion failure discovered in in check_certificate_request() in Contiki-NG tinyDTLS through master branch 53a0d97 allows attackers to cause a denial of service. |
| An issue was discovered in Contiki-NG tinyDTLS through 2018-08-30. One incorrect handshake could complete with different epoch numbers in the packets Client_Hello, Client_key_exchange, and Change_cipher_spec, which may cause denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: remove BUG() after failure to insert delayed dir index item
Instead of calling BUG() when we fail to insert a delayed dir index item
into the delayed node's tree, we can just release all the resources we
have allocated/acquired before and return the error to the caller. This is
fine because all existing call chains undo anything they have done before
calling btrfs_insert_delayed_dir_index() or BUG_ON (when creating pending
snapshots in the transaction commit path).
So remove the BUG() call and do proper error handling.
This relates to a syzbot report linked below, but does not fix it because
it only prevents hitting a BUG(), it does not fix the issue where somehow
we attempt to use twice the same index number for different index items. |
|
An Improper Check for Unusual or Exceptional Conditions vulnerability in Routing Protocol Daemon (RPD) of Juniper Networks Junos OS and Junos OS Evolved allows a network-based, unauthenticated attacker to cause rpd to crash, leading to Denial of Service (DoS).
On all Junos OS and Junos OS Evolved platforms, when NETCONF and gRPC are enabled, and a specific query is executed via Dynamic Rendering (DREND), rpd will crash and restart. Continuous execution of this specific query will cause a sustained Denial of Service (DoS) condition.
This issue affects:
Juniper Networks Junos OS
* 22.2 versions earlier than 22.2R2-S2, 22.2R3;
* 22.3 versions earlier than 22.3R2, 22.3R3.
Juniper Networks Junos OS Evolved
* 22.2 versions earlier than 22.2R2-S2-EVO, 22.2R3-EVO;
* 22.3 versions earlier than 22.3R2-EVO, 22.3R3-EVO.
This issue does not affect Juniper Networks:
Junos OS versions earlier than 22.2R1;
Junos OS Evolved versions earlier than 22.2R1-EVO.
|