CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/dpt: Make DPT object unshrinkable
In some scenarios, the DPT object gets shrunk but
the actual framebuffer did not and thus its still
there on the DPT's vm->bound_list. Then it tries to
rewrite the PTEs via a stale CPU mapping. This causes panic.
[vsyrjala: Add TODO comment]
(cherry picked from commit 51064d471c53dcc8eddd2333c3f1c1d9131ba36c) |
In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: disable rx data ring on dma allocation failure
When vmxnet3_rq_create() fails to allocate memory for rq->data_ring.base,
the subsequent call to vmxnet3_rq_destroy_all_rxdataring does not reset
rq->data_ring.desc_size for the data ring that failed, which presumably
causes the hypervisor to reference it on packet reception.
To fix this bug, rq->data_ring.desc_size needs to be set to 0 to tell
the hypervisor to disable this feature.
[ 95.436876] kernel BUG at net/core/skbuff.c:207!
[ 95.439074] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 95.440411] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 6.9.3-dirty #1
[ 95.441558] Hardware name: VMware, Inc. VMware Virtual
Platform/440BX Desktop Reference Platform, BIOS 6.00 12/12/2018
[ 95.443481] RIP: 0010:skb_panic+0x4d/0x4f
[ 95.444404] Code: 4f 70 50 8b 87 c0 00 00 00 50 8b 87 bc 00 00 00 50
ff b7 d0 00 00 00 4c 8b 8f c8 00 00 00 48 c7 c7 68 e8 be 9f e8 63 58 f9
ff <0f> 0b 48 8b 14 24 48 c7 c1 d0 73 65 9f e8 a1 ff ff ff 48 8b 14 24
[ 95.447684] RSP: 0018:ffffa13340274dd0 EFLAGS: 00010246
[ 95.448762] RAX: 0000000000000089 RBX: ffff8fbbc72b02d0 RCX: 000000000000083f
[ 95.450148] RDX: 0000000000000000 RSI: 00000000000000f6 RDI: 000000000000083f
[ 95.451520] RBP: 000000000000002d R08: 0000000000000000 R09: ffffa13340274c60
[ 95.452886] R10: ffffffffa04ed468 R11: 0000000000000002 R12: 0000000000000000
[ 95.454293] R13: ffff8fbbdab3c2d0 R14: ffff8fbbdbd829e0 R15: ffff8fbbdbd809e0
[ 95.455682] FS: 0000000000000000(0000) GS:ffff8fbeefd80000(0000) knlGS:0000000000000000
[ 95.457178] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.458340] CR2: 00007fd0d1f650c8 CR3: 0000000115f28000 CR4: 00000000000406f0
[ 95.459791] Call Trace:
[ 95.460515] <IRQ>
[ 95.461180] ? __die_body.cold+0x19/0x27
[ 95.462150] ? die+0x2e/0x50
[ 95.462976] ? do_trap+0xca/0x110
[ 95.463973] ? do_error_trap+0x6a/0x90
[ 95.464966] ? skb_panic+0x4d/0x4f
[ 95.465901] ? exc_invalid_op+0x50/0x70
[ 95.466849] ? skb_panic+0x4d/0x4f
[ 95.467718] ? asm_exc_invalid_op+0x1a/0x20
[ 95.468758] ? skb_panic+0x4d/0x4f
[ 95.469655] skb_put.cold+0x10/0x10
[ 95.470573] vmxnet3_rq_rx_complete+0x862/0x11e0 [vmxnet3]
[ 95.471853] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3]
[ 95.473185] __napi_poll+0x2b/0x160
[ 95.474145] net_rx_action+0x2c6/0x3b0
[ 95.475115] handle_softirqs+0xe7/0x2a0
[ 95.476122] __irq_exit_rcu+0x97/0xb0
[ 95.477109] common_interrupt+0x85/0xa0
[ 95.478102] </IRQ>
[ 95.478846] <TASK>
[ 95.479603] asm_common_interrupt+0x26/0x40
[ 95.480657] RIP: 0010:pv_native_safe_halt+0xf/0x20
[ 95.481801] Code: 22 d7 e9 54 87 01 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa eb 07 0f 00 2d 93 ba 3b 00 fb f4 <e9> 2c 87 01 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90
[ 95.485563] RSP: 0018:ffffa133400ffe58 EFLAGS: 00000246
[ 95.486882] RAX: 0000000000004000 RBX: ffff8fbbc1d14064 RCX: 0000000000000000
[ 95.488477] RDX: ffff8fbeefd80000 RSI: ffff8fbbc1d14000 RDI: 0000000000000001
[ 95.490067] RBP: ffff8fbbc1d14064 R08: ffffffffa0652260 R09: 00000000000010d3
[ 95.491683] R10: 0000000000000018 R11: ffff8fbeefdb4764 R12: ffffffffa0652260
[ 95.493389] R13: ffffffffa06522e0 R14: 0000000000000001 R15: 0000000000000000
[ 95.495035] acpi_safe_halt+0x14/0x20
[ 95.496127] acpi_idle_do_entry+0x2f/0x50
[ 95.497221] acpi_idle_enter+0x7f/0xd0
[ 95.498272] cpuidle_enter_state+0x81/0x420
[ 95.499375] cpuidle_enter+0x2d/0x40
[ 95.500400] do_idle+0x1e5/0x240
[ 95.501385] cpu_startup_entry+0x29/0x30
[ 95.502422] start_secondary+0x11c/0x140
[ 95.503454] common_startup_64+0x13e/0x141
[ 95.504466] </TASK>
[ 95.505197] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ip
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: WARN on vNMI + NMI window iff NMIs are outright masked
When requesting an NMI window, WARN on vNMI support being enabled if and
only if NMIs are actually masked, i.e. if the vCPU is already handling an
NMI. KVM's ABI for NMIs that arrive simultanesouly (from KVM's point of
view) is to inject one NMI and pend the other. When using vNMI, KVM pends
the second NMI simply by setting V_NMI_PENDING, and lets the CPU do the
rest (hardware automatically sets V_NMI_BLOCKING when an NMI is injected).
However, if KVM can't immediately inject an NMI, e.g. because the vCPU is
in an STI shadow or is running with GIF=0, then KVM will request an NMI
window and trigger the WARN (but still function correctly).
Whether or not the GIF=0 case makes sense is debatable, as the intent of
KVM's behavior is to provide functionality that is as close to real
hardware as possible. E.g. if two NMIs are sent in quick succession, the
probability of both NMIs arriving in an STI shadow is infinitesimally low
on real hardware, but significantly larger in a virtual environment, e.g.
if the vCPU is preempted in the STI shadow. For GIF=0, the argument isn't
as clear cut, because the window where two NMIs can collide is much larger
in bare metal (though still small).
That said, KVM should not have divergent behavior for the GIF=0 case based
on whether or not vNMI support is enabled. And KVM has allowed
simultaneous NMIs with GIF=0 for over a decade, since commit 7460fb4a3400
("KVM: Fix simultaneous NMIs"). I.e. KVM's GIF=0 handling shouldn't be
modified without a *really* good reason to do so, and if KVM's behavior
were to be modified, it should be done irrespective of vNMI support. |
In the Linux kernel, the following vulnerability has been resolved:
media: mc: Fix graph walk in media_pipeline_start
The graph walk tries to follow all links, even if they are not between
pads. This causes a crash with, e.g. a MEDIA_LNK_FL_ANCILLARY_LINK link.
Fix this by allowing the walk to proceed only for MEDIA_LNK_FL_DATA_LINK
links. |
In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: do not call vma_add_reservation upon ENOMEM
sysbot reported a splat [1] on __unmap_hugepage_range(). This is because
vma_needs_reservation() can return -ENOMEM if
allocate_file_region_entries() fails to allocate the file_region struct
for the reservation.
Check for that and do not call vma_add_reservation() if that is the case,
otherwise region_abort() and region_del() will see that we do not have any
file_regions.
If we detect that vma_needs_reservation() returned -ENOMEM, we clear the
hugetlb_restore_reserve flag as if this reservation was still consumed, so
free_huge_folio() will not increment the resv count.
[1] https://lore.kernel.org/linux-mm/0000000000004096100617c58d54@google.com/T/#ma5983bc1ab18a54910da83416b3f89f3c7ee43aa |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: Set lower bound of start tick time
Currently ALSA timer doesn't have the lower limit of the start tick
time, and it allows a very small size, e.g. 1 tick with 1ns resolution
for hrtimer. Such a situation may lead to an unexpected RCU stall,
where the callback repeatedly queuing the expire update, as reported
by fuzzer.
This patch introduces a sanity check of the timer start tick time, so
that the system returns an error when a too small start size is set.
As of this patch, the lower limit is hard-coded to 100us, which is
small enough but can still work somehow. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: re-fix fortified-memset warning
The carl9170_tx_release() function sometimes triggers a fortified-memset
warning in my randconfig builds:
In file included from include/linux/string.h:254,
from drivers/net/wireless/ath/carl9170/tx.c:40:
In function 'fortify_memset_chk',
inlined from 'carl9170_tx_release' at drivers/net/wireless/ath/carl9170/tx.c:283:2,
inlined from 'kref_put' at include/linux/kref.h:65:3,
inlined from 'carl9170_tx_put_skb' at drivers/net/wireless/ath/carl9170/tx.c:342:9:
include/linux/fortify-string.h:493:25: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
493 | __write_overflow_field(p_size_field, size);
Kees previously tried to avoid this by using memset_after(), but it seems
this does not fully address the problem. I noticed that the memset_after()
here is done on a different part of the union (status) than the original
cast was from (rate_driver_data), which may confuse the compiler.
Unfortunately, the memset_after() trick does not work on driver_rates[]
because that is part of an anonymous struct, and I could not get
struct_group() to do this either. Using two separate memset() calls
on the two members does address the warning though. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: bcm - Fix pointer arithmetic
In spu2_dump_omd() value of ptr is increased by ciph_key_len
instead of hash_iv_len which could lead to going beyond the
buffer boundaries.
Fix this bug by changing ciph_key_len to hash_iv_len.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
net: bridge: xmit: make sure we have at least eth header len bytes
syzbot triggered an uninit value[1] error in bridge device's xmit path
by sending a short (less than ETH_HLEN bytes) skb. To fix it check if
we can actually pull that amount instead of assuming.
Tested with dropwatch:
drop at: br_dev_xmit+0xb93/0x12d0 [bridge] (0xffffffffc06739b3)
origin: software
timestamp: Mon May 13 11:31:53 2024 778214037 nsec
protocol: 0x88a8
length: 2
original length: 2
drop reason: PKT_TOO_SMALL
[1]
BUG: KMSAN: uninit-value in br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65
br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547
__dev_queue_xmit+0x34db/0x5350 net/core/dev.c:4341
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
__bpf_tx_skb net/core/filter.c:2136 [inline]
__bpf_redirect_common net/core/filter.c:2180 [inline]
__bpf_redirect+0x14a6/0x1620 net/core/filter.c:2187
____bpf_clone_redirect net/core/filter.c:2460 [inline]
bpf_clone_redirect+0x328/0x470 net/core/filter.c:2432
___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997
__bpf_prog_run512+0xb5/0xe0 kernel/bpf/core.c:2238
bpf_dispatcher_nop_func include/linux/bpf.h:1234 [inline]
__bpf_prog_run include/linux/filter.h:657 [inline]
bpf_prog_run include/linux/filter.h:664 [inline]
bpf_test_run+0x499/0xc30 net/bpf/test_run.c:425
bpf_prog_test_run_skb+0x14ea/0x1f20 net/bpf/test_run.c:1058
bpf_prog_test_run+0x6b7/0xad0 kernel/bpf/syscall.c:4269
__sys_bpf+0x6aa/0xd90 kernel/bpf/syscall.c:5678
__do_sys_bpf kernel/bpf/syscall.c:5767 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5765 [inline]
__x64_sys_bpf+0xa0/0xe0 kernel/bpf/syscall.c:5765
x64_sys_call+0x96b/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:322
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/cs_dsp_ctl: Use private_free for control cleanup
Use the control private_free callback to free the associated data
block. This ensures that the memory won't leak, whatever way the
control gets destroyed.
The original implementation didn't actually remove the ALSA
controls in hda_cs_dsp_control_remove(). It only freed the internal
tracking structure. This meant it was possible to remove/unload the
amp driver while leaving its ALSA controls still present in the
soundcard. Obviously attempting to access them could cause segfaults
or at least dereferencing stale pointers. |
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: fix list corruption from reorder of WRITE ->lqueued
__blkcg_rstat_flush() can be run anytime, especially when blk_cgroup_bio_start
is being executed.
If WRITE of `->lqueued` is re-ordered with READ of 'bisc->lnode.next' in
the loop of __blkcg_rstat_flush(), `next_bisc` can be assigned with one
stat instance being added in blk_cgroup_bio_start(), then the local
list in __blkcg_rstat_flush() could be corrupted.
Fix the issue by adding one barrier. |
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Wait unconditionally after issuing EndXfer command
Currently all controller IP/revisions except DWC3_usb3 >= 310a
wait 1ms unconditionally for ENDXFER completion when IOC is not
set. This is because DWC_usb3 controller revisions >= 3.10a
supports GUCTL2[14: Rst_actbitlater] bit which allows polling
CMDACT bit to know whether ENDXFER command is completed.
Consider a case where an IN request was queued, and parallelly
soft_disconnect was called (due to ffs_epfile_release). This
eventually calls stop_active_transfer with IOC cleared, hence
send_gadget_ep_cmd() skips waiting for CMDACT cleared during
EndXfer. For DWC3 controllers with revisions >= 310a, we don't
forcefully wait for 1ms either, and we proceed by unmapping the
requests. If ENDXFER didn't complete by this time, it leads to
SMMU faults since the controller would still be accessing those
requests.
Fix this by ensuring ENDXFER completion by adding 1ms delay in
__dwc3_stop_active_transfer() unconditionally. |
In the Linux kernel, the following vulnerability has been resolved:
fs/9p: only translate RWX permissions for plain 9P2000
Garbage in plain 9P2000's perm bits is allowed through, which causes it
to be able to set (among others) the suid bit. This was presumably not
the intent since the unix extended bits are handled explicitly and
conditionally on .u. |
In the Linux kernel, the following vulnerability has been resolved:
amd/amdkfd: sync all devices to wait all processes being evicted
If there are more than one device doing reset in parallel, the first
device will call kfd_suspend_all_processes() to evict all processes
on all devices, this call takes time to finish. other device will
start reset and recover without waiting. if the process has not been
evicted before doing recover, it will be restored, then caused page
fault. |
In the Linux kernel, the following vulnerability has been resolved:
nfs: Handle error of rpc_proc_register() in nfs_net_init().
syzkaller reported a warning [0] triggered while destroying immature
netns.
rpc_proc_register() was called in init_nfs_fs(), but its error
has been ignored since at least the initial commit 1da177e4c3f4
("Linux-2.6.12-rc2").
Recently, commit d47151b79e32 ("nfs: expose /proc/net/sunrpc/nfs
in net namespaces") converted the procfs to per-netns and made
the problem more visible.
Even when rpc_proc_register() fails, nfs_net_init() could succeed,
and thus nfs_net_exit() will be called while destroying the netns.
Then, remove_proc_entry() will be called for non-existing proc
directory and trigger the warning below.
Let's handle the error of rpc_proc_register() properly in nfs_net_init().
[0]:
name 'nfs'
WARNING: CPU: 1 PID: 1710 at fs/proc/generic.c:711 remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Modules linked in:
CPU: 1 PID: 1710 Comm: syz-executor.2 Not tainted 6.8.0-12822-gcd51db110a7e #12
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Code: 41 5d 41 5e c3 e8 85 09 b5 ff 48 c7 c7 88 58 64 86 e8 09 0e 71 02 e8 74 09 b5 ff 4c 89 e6 48 c7 c7 de 1b 80 84 e8 c5 ad 97 ff <0f> 0b eb b1 e8 5c 09 b5 ff 48 c7 c7 88 58 64 86 e8 e0 0d 71 02 eb
RSP: 0018:ffffc9000c6d7ce0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff8880422b8b00 RCX: ffffffff8110503c
RDX: ffff888030652f00 RSI: ffffffff81105045 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: ffffffff81bb62cb R12: ffffffff84807ffc
R13: ffff88804ad6fcc0 R14: ffffffff84807ffc R15: ffffffff85741ff8
FS: 00007f30cfba8640(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ff51afe8000 CR3: 000000005a60a005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
rpc_proc_unregister+0x64/0x70 net/sunrpc/stats.c:310
nfs_net_exit+0x1c/0x30 fs/nfs/inode.c:2438
ops_exit_list+0x62/0xb0 net/core/net_namespace.c:170
setup_net+0x46c/0x660 net/core/net_namespace.c:372
copy_net_ns+0x244/0x590 net/core/net_namespace.c:505
create_new_namespaces+0x2ed/0x770 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xae/0x160 kernel/nsproxy.c:228
ksys_unshare+0x342/0x760 kernel/fork.c:3322
__do_sys_unshare kernel/fork.c:3393 [inline]
__se_sys_unshare kernel/fork.c:3391 [inline]
__x64_sys_unshare+0x1f/0x30 kernel/fork.c:3391
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x4f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0x7f30d0febe5d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007f30cfba7cc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000110
RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f30d0febe5d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000000006c020600
RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
R13: 000000000000000b R14: 00007f30d104c530 R15: 0000000000000000
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Don't free ring buffers that couldn't be re-encrypted
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus ring buffer code could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the struct
vmbus_gpadl for the ring buffers to decide whether to free the memory. |
In the Linux kernel, the following vulnerability has been resolved:
workqueue: Fix selection of wake_cpu in kick_pool()
With cpu_possible_mask=0-63 and cpu_online_mask=0-7 the following
kernel oops was observed:
smp: Bringing up secondary CPUs ...
smp: Brought up 1 node, 8 CPUs
Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0000000000000000 TEID: 0000000000000803
[..]
Call Trace:
arch_vcpu_is_preempted+0x12/0x80
select_idle_sibling+0x42/0x560
select_task_rq_fair+0x29a/0x3b0
try_to_wake_up+0x38e/0x6e0
kick_pool+0xa4/0x198
__queue_work.part.0+0x2bc/0x3a8
call_timer_fn+0x36/0x160
__run_timers+0x1e2/0x328
__run_timer_base+0x5a/0x88
run_timer_softirq+0x40/0x78
__do_softirq+0x118/0x388
irq_exit_rcu+0xc0/0xd8
do_ext_irq+0xae/0x168
ext_int_handler+0xbe/0xf0
psw_idle_exit+0x0/0xc
default_idle_call+0x3c/0x110
do_idle+0xd4/0x158
cpu_startup_entry+0x40/0x48
rest_init+0xc6/0xc8
start_kernel+0x3c4/0x5e0
startup_continue+0x3c/0x50
The crash is caused by calling arch_vcpu_is_preempted() for an offline
CPU. To avoid this, select the cpu with cpumask_any_and_distribute()
to mask __pod_cpumask with cpu_online_mask. In case no cpu is left in
the pool, skip the assignment.
tj: This doesn't fully fix the bug as CPUs can still go down between picking
the target CPU and the wake call. Fixing that likely requires adding
cpu_online() test to either the sched or s390 arch code. However, regardless
of how that is fixed, workqueue shouldn't be picking a CPU which isn't
online as that would result in unpredictable and worse behavior. |
In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Disable auto-enable of exclusive INTx IRQ
Currently for devices requiring masking at the irqchip for INTx, ie.
devices without DisINTx support, the IRQ is enabled in request_irq()
and subsequently disabled as necessary to align with the masked status
flag. This presents a window where the interrupt could fire between
these events, resulting in the IRQ incrementing the disable depth twice.
This would be unrecoverable for a user since the masked flag prevents
nested enables through vfio.
Instead, invert the logic using IRQF_NO_AUTOEN such that exclusive INTx
is never auto-enabled, then unmask as required. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix fortify source warning while accessing Eth segment
------------[ cut here ]------------
memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2)
WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy
[last unloaded: mlx_compat(OE)]
CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7
RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8
R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80
FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x72/0x90
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? __warn+0x8d/0x160
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? report_bug+0x1bb/0x1d0
? handle_bug+0x46/0x90
? exc_invalid_op+0x19/0x80
? asm_exc_invalid_op+0x1b/0x20
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib]
ipoib_send+0x2ec/0x770 [ib_ipoib]
ipoib_start_xmit+0x5a0/0x770 [ib_ipoib]
dev_hard_start_xmit+0x8e/0x1e0
? validate_xmit_skb_list+0x4d/0x80
sch_direct_xmit+0x116/0x3a0
__dev_xmit_skb+0x1fd/0x580
__dev_queue_xmit+0x284/0x6b0
? _raw_spin_unlock_irq+0xe/0x50
? __flush_work.isra.0+0x20d/0x370
? push_pseudo_header+0x17/0x40 [ib_ipoib]
neigh_connected_output+0xcd/0x110
ip_finish_output2+0x179/0x480
? __smp_call_single_queue+0x61/0xa0
__ip_finish_output+0xc3/0x190
ip_finish_output+0x2e/0xf0
ip_output+0x78/0x110
? __pfx_ip_finish_output+0x10/0x10
ip_local_out+0x64/0x70
__ip_queue_xmit+0x18a/0x460
ip_queue_xmit+0x15/0x30
__tcp_transmit_skb+0x914/0x9c0
tcp_write_xmit+0x334/0x8d0
tcp_push_one+0x3c/0x60
tcp_sendmsg_locked+0x2e1/0xac0
tcp_sendmsg+0x2d/0x50
inet_sendmsg+0x43/0x90
sock_sendmsg+0x68/0x80
sock_write_iter+0x93/0x100
vfs_write+0x326/0x3c0
ksys_write+0xbd/0xf0
? do_syscall_64+0x69/0x90
__x64_sys_write+0x19/0x30
do_syscall_
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
dm: call the resume method on internal suspend
There is this reported crash when experimenting with the lvm2 testsuite.
The list corruption is caused by the fact that the postsuspend and resume
methods were not paired correctly; there were two consecutive calls to the
origin_postsuspend function. The second call attempts to remove the
"hash_list" entry from a list, while it was already removed by the first
call.
Fix __dm_internal_resume so that it calls the preresume and resume
methods of the table's targets.
If a preresume method of some target fails, we are in a tricky situation.
We can't return an error because dm_internal_resume isn't supposed to
return errors. We can't return success, because then the "resume" and
"postsuspend" methods would not be paired correctly. So, we set the
DMF_SUSPENDED flag and we fake normal suspend - it may confuse userspace
tools, but it won't cause a kernel crash.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:56!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 8343 Comm: dmsetup Not tainted 6.8.0-rc6 #4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x77/0xc0
<snip>
RSP: 0018:ffff8881b831bcc0 EFLAGS: 00010282
RAX: 000000000000004e RBX: ffff888143b6eb80 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffff819053d0 RDI: 00000000ffffffff
RBP: ffff8881b83a3400 R08: 00000000fffeffff R09: 0000000000000058
R10: 0000000000000000 R11: ffffffff81a24080 R12: 0000000000000001
R13: ffff88814538e000 R14: ffff888143bc6dc0 R15: ffffffffa02e4bb0
FS: 00000000f7c0f780(0000) GS:ffff8893f0a40000(0000) knlGS:0000000000000000
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000057fb5000 CR3: 0000000143474000 CR4: 00000000000006b0
Call Trace:
<TASK>
? die+0x2d/0x80
? do_trap+0xeb/0xf0
? __list_del_entry_valid_or_report+0x77/0xc0
? do_error_trap+0x60/0x80
? __list_del_entry_valid_or_report+0x77/0xc0
? exc_invalid_op+0x49/0x60
? __list_del_entry_valid_or_report+0x77/0xc0
? asm_exc_invalid_op+0x16/0x20
? table_deps+0x1b0/0x1b0 [dm_mod]
? __list_del_entry_valid_or_report+0x77/0xc0
origin_postsuspend+0x1a/0x50 [dm_snapshot]
dm_table_postsuspend_targets+0x34/0x50 [dm_mod]
dm_suspend+0xd8/0xf0 [dm_mod]
dev_suspend+0x1f2/0x2f0 [dm_mod]
? table_deps+0x1b0/0x1b0 [dm_mod]
ctl_ioctl+0x300/0x5f0 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x10 [dm_mod]
__x64_compat_sys_ioctl+0x104/0x170
do_syscall_64+0x184/0x1b0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0xf7e6aead
<snip>
---[ end trace 0000000000000000 ]--- |