Search

Search Results (313738 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53580 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: USB: Gadget: core: Help prevent panic during UVC unconfigure Avichal Rakesh reported a kernel panic that occurred when the UVC gadget driver was removed from a gadget's configuration. The panic involves a somewhat complicated interaction between the kernel driver and a userspace component (as described in the Link tag below), but the analysis did make one thing clear: The Gadget core should accomodate gadget drivers calling usb_gadget_deactivate() as part of their unbind procedure. Currently this doesn't work. gadget_unbind_driver() calls driver->unbind() while holding the udc->connect_lock mutex, and usb_gadget_deactivate() attempts to acquire that mutex, which will result in a deadlock. The simple fix is for gadget_unbind_driver() to release the mutex when invoking the ->unbind() callback. There is no particular reason for it to be holding the mutex at that time, and the mutex isn't held while the ->bind() callback is invoked. So we'll drop the mutex before performing the unbind callback and reacquire it afterward. We'll also add a couple of comments to usb_gadget_activate() and usb_gadget_deactivate(). Because they run in process context they must not be called from a gadget driver's ->disconnect() callback, which (according to the kerneldoc for struct usb_gadget_driver in include/linux/usb/gadget.h) may run in interrupt context. This may help prevent similar bugs from arising in the future.
CVE-2023-53585 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: reject unhashed sockets in bpf_sk_assign The semantics for bpf_sk_assign are as follows: sk = some_lookup_func() bpf_sk_assign(skb, sk) bpf_sk_release(sk) That is, the sk is not consumed by bpf_sk_assign. The function therefore needs to make sure that sk lives long enough to be consumed from __inet_lookup_skb. The path through the stack for a TCPv4 packet is roughly: netif_receive_skb_core: takes RCU read lock __netif_receive_skb_core: sch_handle_ingress: tcf_classify: bpf_sk_assign() deliver_ptype_list_skb: deliver_skb: ip_packet_type->func == ip_rcv: ip_rcv_core: ip_rcv_finish_core: dst_input: ip_local_deliver: ip_local_deliver_finish: ip_protocol_deliver_rcu: tcp_v4_rcv: __inet_lookup_skb: skb_steal_sock The existing helper takes advantage of the fact that everything happens in the same RCU critical section: for sockets with SOCK_RCU_FREE set bpf_sk_assign never takes a reference. skb_steal_sock then checks SOCK_RCU_FREE again and does sock_put if necessary. This approach assumes that SOCK_RCU_FREE is never set on a sk between bpf_sk_assign and skb_steal_sock, but this invariant is violated by unhashed UDP sockets. A new UDP socket is created in TCP_CLOSE state but without SOCK_RCU_FREE set. That flag is only added in udp_lib_get_port() which happens when a socket is bound. When bpf_sk_assign was added it wasn't possible to access unhashed UDP sockets from BPF, so this wasn't a problem. This changed in commit 0c48eefae712 ("sock_map: Lift socket state restriction for datagram sockets"), but the helper wasn't adjusted accordingly. The following sequence of events will therefore lead to a refcount leak: 1. Add socket(AF_INET, SOCK_DGRAM) to a sockmap. 2. Pull socket out of sockmap and bpf_sk_assign it. Since SOCK_RCU_FREE is not set we increment the refcount. 3. bind() or connect() the socket, setting SOCK_RCU_FREE. 4. skb_steal_sock will now set refcounted = false due to SOCK_RCU_FREE. 5. tcp_v4_rcv() skips sock_put(). Fix the problem by rejecting unhashed sockets in bpf_sk_assign(). This matches the behaviour of __inet_lookup_skb which is ultimately the goal of bpf_sk_assign().
CVE-2023-53587 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Sync IRQ works before buffer destruction If something was written to the buffer just before destruction, it may be possible (maybe not in a real system, but it did happen in ARCH=um with time-travel) to destroy the ringbuffer before the IRQ work ran, leading this KASAN report (or a crash without KASAN): BUG: KASAN: slab-use-after-free in irq_work_run_list+0x11a/0x13a Read of size 8 at addr 000000006d640a48 by task swapper/0 CPU: 0 PID: 0 Comm: swapper Tainted: G W O 6.3.0-rc1 #7 Stack: 60c4f20f 0c203d48 41b58ab3 60f224fc 600477fa 60f35687 60c4f20f 601273dd 00000008 6101eb00 6101eab0 615be548 Call Trace: [<60047a58>] show_stack+0x25e/0x282 [<60c609e0>] dump_stack_lvl+0x96/0xfd [<60c50d4c>] print_report+0x1a7/0x5a8 [<603078d3>] kasan_report+0xc1/0xe9 [<60308950>] __asan_report_load8_noabort+0x1b/0x1d [<60232844>] irq_work_run_list+0x11a/0x13a [<602328b4>] irq_work_tick+0x24/0x34 [<6017f9dc>] update_process_times+0x162/0x196 [<6019f335>] tick_sched_handle+0x1a4/0x1c3 [<6019fd9e>] tick_sched_timer+0x79/0x10c [<601812b9>] __hrtimer_run_queues.constprop.0+0x425/0x695 [<60182913>] hrtimer_interrupt+0x16c/0x2c4 [<600486a3>] um_timer+0x164/0x183 [...] Allocated by task 411: save_stack_trace+0x99/0xb5 stack_trace_save+0x81/0x9b kasan_save_stack+0x2d/0x54 kasan_set_track+0x34/0x3e kasan_save_alloc_info+0x25/0x28 ____kasan_kmalloc+0x8b/0x97 __kasan_kmalloc+0x10/0x12 __kmalloc+0xb2/0xe8 load_elf_phdrs+0xee/0x182 [...] The buggy address belongs to the object at 000000006d640800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 584 bytes inside of freed 1024-byte region [000000006d640800, 000000006d640c00) Add the appropriate irq_work_sync() so the work finishes before the buffers are destroyed. Prior to the commit in the Fixes tag below, there was only a single global IRQ work, so this issue didn't exist.
CVE-2023-53588 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check for station first in client probe When probing a client, first check if we have it, and then check for the channel context, otherwise you can trigger the warning there easily by probing when the AP isn't even started yet. Since a client existing means the AP is also operating, we can then keep the warning. Also simplify the moved code a bit.
CVE-2023-53590 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sctp: add a refcnt in sctp_stream_priorities to avoid a nested loop With this refcnt added in sctp_stream_priorities, we don't need to traverse all streams to check if the prio is used by other streams when freeing one stream's prio in sctp_sched_prio_free_sid(). This can avoid a nested loop (up to 65535 * 65535), which may cause a stuck as Ying reported: watchdog: BUG: soft lockup - CPU#23 stuck for 26s! [ksoftirqd/23:136] Call Trace: <TASK> sctp_sched_prio_free_sid+0xab/0x100 [sctp] sctp_stream_free_ext+0x64/0xa0 [sctp] sctp_stream_free+0x31/0x50 [sctp] sctp_association_free+0xa5/0x200 [sctp] Note that it doesn't need to use refcount_t type for this counter, as its accessing is always protected under the sock lock. v1->v2: - add a check in sctp_sched_prio_set to avoid the possible prio_head refcnt overflow.
CVE-2023-53593 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Release folio lock on fscache read hit. Under the current code, when cifs_readpage_worker is called, the call contract is that the callee should unlock the page. This is documented in the read_folio section of Documentation/filesystems/vfs.rst as: > The filesystem should unlock the folio once the read has completed, > whether it was successful or not. Without this change, when fscache is in use and cache hit occurs during a read, the page lock is leaked, producing the following stack on subsequent reads (via mmap) to the page: $ cat /proc/3890/task/12864/stack [<0>] folio_wait_bit_common+0x124/0x350 [<0>] filemap_read_folio+0xad/0xf0 [<0>] filemap_fault+0x8b1/0xab0 [<0>] __do_fault+0x39/0x150 [<0>] do_fault+0x25c/0x3e0 [<0>] __handle_mm_fault+0x6ca/0xc70 [<0>] handle_mm_fault+0xe9/0x350 [<0>] do_user_addr_fault+0x225/0x6c0 [<0>] exc_page_fault+0x84/0x1b0 [<0>] asm_exc_page_fault+0x27/0x30 This requires a reboot to resolve; it is a deadlock. Note however that the call to cifs_readpage_from_fscache does mark the page clean, but does not free the folio lock. This happens in __cifs_readpage_from_fscache on success. Releasing the lock at that point however is not appropriate as cifs_readahead also calls cifs_readpage_from_fscache and *does* unconditionally release the lock after its return. This change therefore effectively makes cifs_readpage_worker work like cifs_readahead.
CVE-2023-53596 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: base: Free devm resources when unregistering a device In the current code, devres_release_all() only gets called if the device has a bus and has been probed. This leads to issues when using bus-less or driver-less devices where the device might never get freed if a managed resource holds a reference to the device. This is happening in the DRM framework for example. We should thus call devres_release_all() in the device_del() function to make sure that the device-managed actions are properly executed when the device is unregistered, even if it has neither a bus nor a driver. This is effectively the same change than commit 2f8d16a996da ("devres: release resources on device_del()") that got reverted by commit a525a3ddeaca ("driver core: free devres in device_release") over memory leaks concerns. This patch effectively combines the two commits mentioned above to release the resources both on device_del() and device_release() and get the best of both worlds.
CVE-2023-53597 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix mid leak during reconnection after timeout threshold When the number of responses with status of STATUS_IO_TIMEOUT exceeds a specified threshold (NUM_STATUS_IO_TIMEOUT), we reconnect the connection. But we do not return the mid, or the credits returned for the mid, or reduce the number of in-flight requests. This bug could result in the server->in_flight count to go bad, and also cause a leak in the mids. This change moves the check to a few lines below where the response is decrypted, even of the response is read from the transform header. This way, the code for returning the mids can be reused. Also, the cifs_reconnect was reconnecting just the transport connection before. In case of multi-channel, this may not be what we want to do after several timeouts. Changed that to reconnect the session and the tree too. Also renamed NUM_STATUS_IO_TIMEOUT to a more appropriate name MAX_STATUS_IO_TIMEOUT.
CVE-2023-53598 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: host: Range check CHDBOFF and ERDBOFF If the value read from the CHDBOFF and ERDBOFF registers is outside the range of the MHI register space then an invalid address might be computed which later causes a kernel panic. Range check the read value to prevent a crash due to bad data from the device.
CVE-2023-53600 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tunnels: fix kasan splat when generating ipv4 pmtu error If we try to emit an icmp error in response to a nonliner skb, we get BUG: KASAN: slab-out-of-bounds in ip_compute_csum+0x134/0x220 Read of size 4 at addr ffff88811c50db00 by task iperf3/1691 CPU: 2 PID: 1691 Comm: iperf3 Not tainted 6.5.0-rc3+ #309 [..] kasan_report+0x105/0x140 ip_compute_csum+0x134/0x220 iptunnel_pmtud_build_icmp+0x554/0x1020 skb_tunnel_check_pmtu+0x513/0xb80 vxlan_xmit_one+0x139e/0x2ef0 vxlan_xmit+0x1867/0x2760 dev_hard_start_xmit+0x1ee/0x4f0 br_dev_queue_push_xmit+0x4d1/0x660 [..] ip_compute_csum() cannot deal with nonlinear skbs, so avoid it. After this change, splat is gone and iperf3 is no longer stuck.
CVE-2023-53604 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm integrity: call kmem_cache_destroy() in dm_integrity_init() error path Otherwise the journal_io_cache will leak if dm_register_target() fails.
CVE-2023-53606 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: clean up potential nfsd_file refcount leaks in COPY codepath There are two different flavors of the nfsd4_copy struct. One is embedded in the compound and is used directly in synchronous copies. The other is dynamically allocated, refcounted and tracked in the client struture. For the embedded one, the cleanup just involves releasing any nfsd_files held on its behalf. For the async one, the cleanup is a bit more involved, and we need to dequeue it from lists, unhash it, etc. There is at least one potential refcount leak in this code now. If the kthread_create call fails, then both the src and dst nfsd_files in the original nfsd4_copy object are leaked. The cleanup in this codepath is also sort of weird. In the async copy case, we'll have up to four nfsd_file references (src and dst for both flavors of copy structure). They are both put at the end of nfsd4_do_async_copy, even though the ones held on behalf of the embedded one outlive that structure. Change it so that we always clean up the nfsd_file refs held by the embedded copy structure before nfsd4_copy returns. Rework cleanup_async_copy to handle both inter and intra copies. Eliminate nfsd4_cleanup_intra_ssc since it now becomes a no-op.
CVE-2023-53610 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: irqchip: Fix refcount leak in platform_irqchip_probe of_irq_find_parent() returns a node pointer with refcount incremented, We should use of_node_put() on it when not needed anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2023-53608 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread() The finalization of nilfs_segctor_thread() can race with nilfs_segctor_kill_thread() which terminates that thread, potentially causing a use-after-free BUG as KASAN detected. At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member of "struct nilfs_sc_info" to indicate the thread has finished, and then notifies nilfs_segctor_kill_thread() of this using waitqueue "sc_wait_task" on the struct nilfs_sc_info. However, here, immediately after the NULL assignment to "sc_task", it is possible that nilfs_segctor_kill_thread() will detect it and return to continue the deallocation, freeing the nilfs_sc_info structure before the thread does the notification. This fixes the issue by protecting the NULL assignment to "sc_task" and its notification, with spinlock "sc_state_lock" of the struct nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate the race.
CVE-2023-53609 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: Revert "scsi: core: Do not increase scsi_device's iorequest_cnt if dispatch failed" The "atomic_inc(&cmd->device->iorequest_cnt)" in scsi_queue_rq() would cause kernel panic because cmd->device may be freed after returning from scsi_dispatch_cmd(). This reverts commit cfee29ffb45b1c9798011b19d454637d1b0fe87d.
CVE-2023-53613 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dax: Fix dax_mapping_release() use after free A CONFIG_DEBUG_KOBJECT_RELEASE test of removing a device-dax region provider (like modprobe -r dax_hmem) yields: kobject: 'mapping0' (ffff93eb460e8800): kobject_release, parent 0000000000000000 (delayed 2000) [..] DEBUG_LOCKS_WARN_ON(1) WARNING: CPU: 23 PID: 282 at kernel/locking/lockdep.c:232 __lock_acquire+0x9fc/0x2260 [..] RIP: 0010:__lock_acquire+0x9fc/0x2260 [..] Call Trace: <TASK> [..] lock_acquire+0xd4/0x2c0 ? ida_free+0x62/0x130 _raw_spin_lock_irqsave+0x47/0x70 ? ida_free+0x62/0x130 ida_free+0x62/0x130 dax_mapping_release+0x1f/0x30 device_release+0x36/0x90 kobject_delayed_cleanup+0x46/0x150 Due to attempting ida_free() on an ida object that has already been freed. Devices typically only hold a reference on their parent while registered. If a child needs a parent object to complete its release it needs to hold a reference that it drops from its release callback. Arrange for a dax_mapping to pin its parent dev_dax instance until dax_mapping_release().
CVE-2023-53615 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix deletion race condition System crash when using debug kernel due to link list corruption. The cause of the link list corruption is due to session deletion was allowed to queue up twice. Here's the internal trace that show the same port was allowed to double queue for deletion on different cpu. 20808683956 015 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 20808683957 027 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 Move the clearing/setting of deleted flag lock.
CVE-2022-50507 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Validate data run offset This adds sanity checks for data run offset. We should make sure data run offset is legit before trying to unpack them, otherwise we may encounter use-after-free or some unexpected memory access behaviors. [ 82.940342] BUG: KASAN: use-after-free in run_unpack+0x2e3/0x570 [ 82.941180] Read of size 1 at addr ffff888008a8487f by task mount/240 [ 82.941670] [ 82.942069] CPU: 0 PID: 240 Comm: mount Not tainted 5.19.0+ #15 [ 82.942482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 82.943720] Call Trace: [ 82.944204] <TASK> [ 82.944471] dump_stack_lvl+0x49/0x63 [ 82.944908] print_report.cold+0xf5/0x67b [ 82.945141] ? __wait_on_bit+0x106/0x120 [ 82.945750] ? run_unpack+0x2e3/0x570 [ 82.946626] kasan_report+0xa7/0x120 [ 82.947046] ? run_unpack+0x2e3/0x570 [ 82.947280] __asan_load1+0x51/0x60 [ 82.947483] run_unpack+0x2e3/0x570 [ 82.947709] ? memcpy+0x4e/0x70 [ 82.947927] ? run_pack+0x7a0/0x7a0 [ 82.948158] run_unpack_ex+0xad/0x3f0 [ 82.948399] ? mi_enum_attr+0x14a/0x200 [ 82.948717] ? run_unpack+0x570/0x570 [ 82.949072] ? ni_enum_attr_ex+0x1b2/0x1c0 [ 82.949332] ? ni_fname_type.part.0+0xd0/0xd0 [ 82.949611] ? mi_read+0x262/0x2c0 [ 82.949970] ? ntfs_cmp_names_cpu+0x125/0x180 [ 82.950249] ntfs_iget5+0x632/0x1870 [ 82.950621] ? ntfs_get_block_bmap+0x70/0x70 [ 82.951192] ? evict+0x223/0x280 [ 82.951525] ? iput.part.0+0x286/0x320 [ 82.951969] ntfs_fill_super+0x1321/0x1e20 [ 82.952436] ? put_ntfs+0x1d0/0x1d0 [ 82.952822] ? vsprintf+0x20/0x20 [ 82.953188] ? mutex_unlock+0x81/0xd0 [ 82.953379] ? set_blocksize+0x95/0x150 [ 82.954001] get_tree_bdev+0x232/0x370 [ 82.954438] ? put_ntfs+0x1d0/0x1d0 [ 82.954700] ntfs_fs_get_tree+0x15/0x20 [ 82.955049] vfs_get_tree+0x4c/0x130 [ 82.955292] path_mount+0x645/0xfd0 [ 82.955615] ? putname+0x80/0xa0 [ 82.955955] ? finish_automount+0x2e0/0x2e0 [ 82.956310] ? kmem_cache_free+0x110/0x390 [ 82.956723] ? putname+0x80/0xa0 [ 82.957023] do_mount+0xd6/0xf0 [ 82.957411] ? path_mount+0xfd0/0xfd0 [ 82.957638] ? __kasan_check_write+0x14/0x20 [ 82.957948] __x64_sys_mount+0xca/0x110 [ 82.958310] do_syscall_64+0x3b/0x90 [ 82.958719] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 82.959341] RIP: 0033:0x7fd0d1ce948a [ 82.960193] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008 [ 82.961532] RSP: 002b:00007ffe59ff69a8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 [ 82.962527] RAX: ffffffffffffffda RBX: 0000564dcc107060 RCX: 00007fd0d1ce948a [ 82.963266] RDX: 0000564dcc107260 RSI: 0000564dcc1072e0 RDI: 0000564dcc10fce0 [ 82.963686] RBP: 0000000000000000 R08: 0000564dcc107280 R09: 0000000000000020 [ 82.964272] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564dcc10fce0 [ 82.964785] R13: 0000564dcc107260 R14: 0000000000000000 R15: 00000000ffffffff
CVE-2023-53583 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf: RISC-V: Remove PERF_HES_STOPPED flag checking in riscv_pmu_start() Since commit 096b52fd2bb4 ("perf: RISC-V: throttle perf events") the perf_sample_event_took() function was added to report time spent in overflow interrupts. If the interrupt takes too long, the perf framework will lower the sysctl_perf_event_sample_rate and max_samples_per_tick. When hwc->interrupts is larger than max_samples_per_tick, the hwc->interrupts will be set to MAX_INTERRUPTS, and events will be throttled within the __perf_event_account_interrupt() function. However, the RISC-V PMU driver doesn't call riscv_pmu_stop() to update the PERF_HES_STOPPED flag after perf_event_overflow() in pmu_sbi_ovf_handler() function to avoid throttling. When the perf framework unthrottled the event in the timer interrupt handler, it triggers riscv_pmu_start() function and causes a WARN_ON_ONCE() warning, as shown below: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 240 at drivers/perf/riscv_pmu.c:184 riscv_pmu_start+0x7c/0x8e Modules linked in: CPU: 0 PID: 240 Comm: ls Not tainted 6.4-rc4-g19d0788e9ef2 #1 Hardware name: SiFive (DT) epc : riscv_pmu_start+0x7c/0x8e ra : riscv_pmu_start+0x28/0x8e epc : ffffffff80aef864 ra : ffffffff80aef810 sp : ffff8f80004db6f0 gp : ffffffff81c83750 tp : ffffaf80069f9bc0 t0 : ffff8f80004db6c0 t1 : 0000000000000000 t2 : 000000000000001f s0 : ffff8f80004db720 s1 : ffffaf8008ca1068 a0 : 0000ffffffffffff a1 : 0000000000000000 a2 : 0000000000000001 a3 : 0000000000000870 a4 : 0000000000000000 a5 : 0000000000000000 a6 : 0000000000000840 a7 : 0000000000000030 s2 : 0000000000000000 s3 : ffffaf8005165800 s4 : ffffaf800424da00 s5 : ffffffffffffffff s6 : ffffffff81cc7590 s7 : 0000000000000000 s8 : 0000000000000006 s9 : 0000000000000001 s10: ffffaf807efbc340 s11: ffffaf807efbbf00 t3 : ffffaf8006a16028 t4 : 00000000dbfbb796 t5 : 0000000700000000 t6 : ffffaf8005269870 status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [<ffffffff80aef864>] riscv_pmu_start+0x7c/0x8e [<ffffffff80185b56>] perf_adjust_freq_unthr_context+0x15e/0x174 [<ffffffff80188642>] perf_event_task_tick+0x88/0x9c [<ffffffff800626a8>] scheduler_tick+0xfe/0x27c [<ffffffff800b5640>] update_process_times+0x9a/0xba [<ffffffff800c5bd4>] tick_sched_handle+0x32/0x66 [<ffffffff800c5e0c>] tick_sched_timer+0x64/0xb0 [<ffffffff800b5e50>] __hrtimer_run_queues+0x156/0x2f4 [<ffffffff800b6bdc>] hrtimer_interrupt+0xe2/0x1fe [<ffffffff80acc9e8>] riscv_timer_interrupt+0x38/0x42 [<ffffffff80090a16>] handle_percpu_devid_irq+0x90/0x1d2 [<ffffffff8008a9f4>] generic_handle_domain_irq+0x28/0x36 After referring other PMU drivers like Arm, Loongarch, Csky, and Mips, they don't call *_pmu_stop() to update with PERF_HES_STOPPED flag after perf_event_overflow() function nor do they add PERF_HES_STOPPED flag checking in *_pmu_start() which don't cause this warning. Thus, it's recommended to remove this unnecessary check in riscv_pmu_start() function to prevent this warning.
CVE-2023-53534 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: mtk_drm_crtc: Add checks for devm_kcalloc As the devm_kcalloc may return NULL, the return value needs to be checked to avoid NULL poineter dereference.