CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The Fintelligence Calculator plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'fintelligence-calculator' shortcode in all versions up to, and including, 1.0.3 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Ird Slider plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'irdslider' shortcode in all versions up to, and including, 1.0.2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The MPWizard – Create Mercado Pago Payment Links plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.2.1. This is due to missing or incorrect nonce validation in the '/includes/admin/class-mpwizard-table.php' file. This makes it possible for unauthenticated attackers to delete arbitrary posts via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The AP Background plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 3.8.2. This is due to missing or incorrect nonce validation on the advParallaxBackAdminSaveSlider function. This makes it possible for unauthenticated attackers to create or modify background sliders via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Optimize More! – CSS plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0.3. This is due to missing or incorrect nonce validation on the reset_plugin function. This makes it possible for unauthenticated attackers to reset the plugin's optimization settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
In the Linux kernel, the following vulnerability has been resolved:
xhci: Remove device endpoints from bandwidth list when freeing the device
Endpoints are normally deleted from the bandwidth list when they are
dropped, before the virt device is freed.
If xHC host is dying or being removed then the endpoints aren't dropped
cleanly due to functions returning early to avoid interacting with a
non-accessible host controller.
So check and delete endpoints that are still on the bandwidth list when
freeing the virt device.
Solves a list_del corruption kernel crash when unbinding xhci-pci,
caused by xhci_mem_cleanup() when it later tried to delete already freed
endpoints from the bandwidth list.
This only affects hosts that use software bandwidth checking, which
currenty is only the xHC in intel Panther Point PCH (Ivy Bridge) |
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: Init completion before kobject_init_and_add()
In cpufreq_policy_alloc(), it will call uninitialed completion in
cpufreq_sysfs_release() when kobject_init_and_add() fails. And
that will cause a crash such as the following page fault in complete:
BUG: unable to handle page fault for address: fffffffffffffff8
[..]
RIP: 0010:complete+0x98/0x1f0
[..]
Call Trace:
kobject_put+0x1be/0x4c0
cpufreq_online.cold+0xee/0x1fd
cpufreq_add_dev+0x183/0x1e0
subsys_interface_register+0x3f5/0x4e0
cpufreq_register_driver+0x3b7/0x670
acpi_cpufreq_init+0x56c/0x1000 [acpi_cpufreq]
do_one_initcall+0x13d/0x780
do_init_module+0x1c3/0x630
load_module+0x6e67/0x73b0
__do_sys_finit_module+0x181/0x240
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
macintosh: fix possible memory leak in macio_add_one_device()
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically. It
needs to be freed when of_device_register() fails. Call put_device() to
give up the reference that's taken in device_initialize(), so that it
can be freed in kobject_cleanup() when the refcount hits 0.
macio device is freed in macio_release_dev(), so the kfree() can be
removed. |
In the Linux kernel, the following vulnerability has been resolved:
rtc: class: Fix potential memleak in devm_rtc_allocate_device()
devm_rtc_allocate_device() will alloc a rtc_device first, and then run
dev_set_name(). If dev_set_name() failed, the rtc_device will memleak.
Move devm_add_action_or_reset() in front of dev_set_name() to prevent
memleak.
unreferenced object 0xffff888110a53000 (size 2048):
comm "python3", pid 470, jiffies 4296078308 (age 58.882s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 08 30 a5 10 81 88 ff ff .........0......
08 30 a5 10 81 88 ff ff 00 00 00 00 00 00 00 00 .0..............
backtrace:
[<000000004aac0364>] kmalloc_trace+0x21/0x110
[<000000000ff02202>] devm_rtc_allocate_device+0xd4/0x400
[<000000001bdf5639>] devm_rtc_device_register+0x1a/0x80
[<00000000351bf81c>] rx4581_probe+0xdd/0x110 [rtc_rx4581]
[<00000000f0eba0ae>] spi_probe+0xde/0x130
[<00000000bff89ee8>] really_probe+0x175/0x3f0
[<00000000128e8d84>] __driver_probe_device+0xe6/0x170
[<00000000ee5bf913>] device_driver_attach+0x32/0x80
[<00000000f3f28f92>] bind_store+0x10b/0x1a0
[<000000009ff812d8>] drv_attr_store+0x49/0x70
[<000000008139c323>] sysfs_kf_write+0x8d/0xb0
[<00000000b6146e01>] kernfs_fop_write_iter+0x214/0x2d0
[<00000000ecbe3895>] vfs_write+0x61a/0x7d0
[<00000000aa2196ea>] ksys_write+0xc8/0x190
[<0000000046a600f5>] do_syscall_64+0x37/0x90
[<00000000541a336f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix shift-out-of-bounds/overflow in nilfs_sb2_bad_offset()
Patch series "nilfs2: fix UBSAN shift-out-of-bounds warnings on mount
time".
The first patch fixes a bug reported by syzbot, and the second one fixes
the remaining bug of the same kind. Although they are triggered by the
same super block data anomaly, I divided it into the above two because the
details of the issues and how to fix it are different.
Both are required to eliminate the shift-out-of-bounds issues at mount
time.
This patch (of 2):
If the block size exponent information written in an on-disk superblock is
corrupted, nilfs_sb2_bad_offset helper function can trigger
shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn
is set):
shift exponent 38983 is too large for 64-bit type 'unsigned long long'
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:151 [inline]
__ubsan_handle_shift_out_of_bounds+0x33d/0x3b0 lib/ubsan.c:322
nilfs_sb2_bad_offset fs/nilfs2/the_nilfs.c:449 [inline]
nilfs_load_super_block+0xdf5/0xe00 fs/nilfs2/the_nilfs.c:523
init_nilfs+0xb7/0x7d0 fs/nilfs2/the_nilfs.c:577
nilfs_fill_super+0xb1/0x5d0 fs/nilfs2/super.c:1047
nilfs_mount+0x613/0x9b0 fs/nilfs2/super.c:1317
...
In addition, since nilfs_sb2_bad_offset() performs multiplication without
considering the upper bound, the computation may overflow if the disk
layout parameters are not normal.
This fixes these issues by inserting preliminary sanity checks for those
parameters and by converting the comparison from one involving
multiplication and left bit-shifting to one using division and right
bit-shifting. |
In the Linux kernel, the following vulnerability has been resolved:
memory: pl353-smc: Fix refcount leak bug in pl353_smc_probe()
The break of for_each_available_child_of_node() needs a
corresponding of_node_put() when the reference 'child' is not
used anymore. Here we do not need to call of_node_put() in
fail path as '!match' means no break.
While the of_platform_device_create() will created a new
reference by 'child' but it has considered the refcounting. |
In the Linux kernel, the following vulnerability has been resolved:
cxl: fix possible null-ptr-deref in cxl_guest_init_afu|adapter()
If device_register() fails in cxl_register_afu|adapter(), the device
is not added, device_unregister() can not be called in the error path,
otherwise it will cause a null-ptr-deref because of removing not added
device.
As comment of device_register() says, it should use put_device() to give
up the reference in the error path. So split device_unregister() into
device_del() and put_device(), then goes to put dev when register fails. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential memory leaks
When the driver hits -ENOMEM at allocating a URB or a buffer, it
aborts and goes to the error path that releases the all previously
allocated resources. However, when -ENOMEM hits at the middle of the
sync EP URB allocation loop, the partially allocated URBs might be
left without released, because ep->nurbs is still zero at that point.
Fix it by setting ep->nurbs at first, so that the error handler loops
over the full URB list. |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: Fix return type of netcp_ndo_start_xmit()
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed. A
proposed warning in clang aims to catch these at compile time, which
reveals:
drivers/net/ethernet/ti/netcp_core.c:1944:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.ndo_start_xmit = netcp_ndo_start_xmit,
^~~~~~~~~~~~~~~~~~~~
1 error generated.
->ndo_start_xmit() in 'struct net_device_ops' expects a return type of
'netdev_tx_t', not 'int'. Adjust the return type of
netcp_ndo_start_xmit() to match the prototype's to resolve the warning
and CFI failure. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mipi-dsi: Detach devices when removing the host
Whenever the MIPI-DSI host is unregistered, the code of
mipi_dsi_host_unregister() loops over every device currently found on that
bus and will unregister it.
However, it doesn't detach it from the bus first, which leads to all kind
of resource leaks if the host wants to perform some clean up whenever a
device is detached. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix use-after-free on probe deferral
The bridge counter was never reset when tearing down the DRM device so
that stale pointers to deallocated structures would be accessed on the
next tear down (e.g. after a second late bind deferral).
Given enough bridges and a few probe deferrals this could currently also
lead to data beyond the bridge array being corrupted.
Patchwork: https://patchwork.freedesktop.org/patch/502665/ |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix smbdirect_recv_io leak in smbd_negotiate() error path
During tests of another unrelated patch I was able to trigger this
error: Objects remaining on __kmem_cache_shutdown() |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: let smbd_destroy() call disable_work_sync(&info->post_send_credits_work)
In smbd_destroy() we may destroy the memory so we better
wait until post_send_credits_work is no longer pending
and will never be started again.
I actually just hit the case using rxe:
WARNING: CPU: 0 PID: 138 at drivers/infiniband/sw/rxe/rxe_verbs.c:1032 rxe_post_recv+0x1ee/0x480 [rdma_rxe]
...
[ 5305.686979] [ T138] smbd_post_recv+0x445/0xc10 [cifs]
[ 5305.687135] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687149] [ T138] ? __kasan_check_write+0x14/0x30
[ 5305.687185] [ T138] ? __pfx_smbd_post_recv+0x10/0x10 [cifs]
[ 5305.687329] [ T138] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 5305.687356] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687368] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687378] [ T138] ? _raw_spin_unlock_irqrestore+0x11/0x60
[ 5305.687389] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687399] [ T138] ? get_receive_buffer+0x168/0x210 [cifs]
[ 5305.687555] [ T138] smbd_post_send_credits+0x382/0x4b0 [cifs]
[ 5305.687701] [ T138] ? __pfx_smbd_post_send_credits+0x10/0x10 [cifs]
[ 5305.687855] [ T138] ? __pfx___schedule+0x10/0x10
[ 5305.687865] [ T138] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 5305.687875] [ T138] ? queue_delayed_work_on+0x8e/0xa0
[ 5305.687889] [ T138] process_one_work+0x629/0xf80
[ 5305.687908] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687917] [ T138] ? __kasan_check_write+0x14/0x30
[ 5305.687933] [ T138] worker_thread+0x87f/0x1570
...
It means rxe_post_recv was called after rdma_destroy_qp().
This happened because put_receive_buffer() was triggered
by ib_drain_qp() and called:
queue_work(info->workqueue, &info->post_send_credits_work); |
In the Linux kernel, the following vulnerability has been resolved:
net: rfkill: gpio: Fix crash due to dereferencering uninitialized pointer
Since commit 7d5e9737efda ("net: rfkill: gpio: get the name and type from
device property") rfkill_find_type() gets called with the possibly
uninitialized "const char *type_name;" local variable.
On x86 systems when rfkill-gpio binds to a "BCM4752" or "LNV4752"
acpi_device, the rfkill->type is set based on the ACPI acpi_device_id:
rfkill->type = (unsigned)id->driver_data;
and there is no "type" property so device_property_read_string() will fail
and leave type_name uninitialized, leading to a potential crash.
rfkill_find_type() does accept a NULL pointer, fix the potential crash
by initializing type_name to NULL.
Note likely sofar this has not been caught because:
1. Not many x86 machines actually have a "BCM4752"/"LNV4752" acpi_device
2. The stack happened to contain NULL where type_name is stored |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: q6apm-lpass-dais: Fix NULL pointer dereference if source graph failed
If earlier opening of source graph fails (e.g. ADSP rejects due to
incorrect audioreach topology), the graph is closed and
"dai_data->graph[dai->id]" is assigned NULL. Preparing the DAI for sink
graph continues though and next call to q6apm_lpass_dai_prepare()
receives dai_data->graph[dai->id]=NULL leading to NULL pointer
exception:
qcom-apm gprsvc:service:2:1: Error (1) Processing 0x01001002 cmd
qcom-apm gprsvc:service:2:1: DSP returned error[1001002] 1
q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: fail to start APM port 78
q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: ASoC: error at snd_soc_pcm_dai_prepare on TX_CODEC_DMA_TX_3: -22
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a8
...
Call trace:
q6apm_graph_media_format_pcm+0x48/0x120 (P)
q6apm_lpass_dai_prepare+0x110/0x1b4
snd_soc_pcm_dai_prepare+0x74/0x108
__soc_pcm_prepare+0x44/0x160
dpcm_be_dai_prepare+0x124/0x1c0 |