CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix sdma v4 sw fini error
Fix sdma v4 sw fini error for sdma 4.2.2 to
solve the following general protection fault
[ +0.108196] general protection fault, probably for non-canonical
address 0xd5e5a4ae79d24a32: 0000 [#1] PREEMPT SMP PTI
[ +0.000018] RIP: 0010:free_fw_priv+0xd/0x70
[ +0.000022] Call Trace:
[ +0.000012] <TASK>
[ +0.000011] release_firmware+0x55/0x80
[ +0.000021] amdgpu_ucode_release+0x11/0x20 [amdgpu]
[ +0.000415] amdgpu_sdma_destroy_inst_ctx+0x4f/0x90 [amdgpu]
[ +0.000360] sdma_v4_0_sw_fini+0xce/0x110 [amdgpu] |
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: davinci: Fix clk use after free
The remove function first frees the clks and only then calls
cpufreq_unregister_driver(). If one of the cpufreq callbacks is called
just before cpufreq_unregister_driver() is run, the freed clks might be
used. |
In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add max vqp attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa max vqp attr to avoid
such bugs. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid use-after-free for cached IPU bio
xfstest generic/019 reports a bug:
kernel BUG at mm/filemap.c:1619!
RIP: 0010:folio_end_writeback+0x8a/0x90
Call Trace:
end_page_writeback+0x1c/0x60
f2fs_write_end_io+0x199/0x420
bio_endio+0x104/0x180
submit_bio_noacct+0xa5/0x510
submit_bio+0x48/0x80
f2fs_submit_write_bio+0x35/0x300
f2fs_submit_merged_ipu_write+0x2a0/0x2b0
f2fs_write_single_data_page+0x838/0x8b0
f2fs_write_cache_pages+0x379/0xa30
f2fs_write_data_pages+0x30c/0x340
do_writepages+0xd8/0x1b0
__writeback_single_inode+0x44/0x370
writeback_sb_inodes+0x233/0x4d0
__writeback_inodes_wb+0x56/0xf0
wb_writeback+0x1dd/0x2d0
wb_workfn+0x367/0x4a0
process_one_work+0x21d/0x430
worker_thread+0x4e/0x3c0
kthread+0x103/0x130
ret_from_fork+0x2c/0x50
The root cause is: after cp_error is set, f2fs_submit_merged_ipu_write()
in f2fs_write_single_data_page() tries to flush IPU bio in cache, however
f2fs_submit_merged_ipu_write() missed to check validity of @bio parameter,
result in submitting random cached bio which belong to other IO context,
then it will cause use-after-free issue, fix it by adding additional
validity check. |
JavaScript can be ran inside the address bar via the dashboard "Open in new Tab" Button, making the application vulnerable to session hijacking. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: unmap and remove csa_va properly
Root PD BO should be reserved before unmap and remove
a bo_va from VM otherwise lockdep will complain.
v2: check fpriv->csa_va is not NULL instead of amdgpu_mcbp (christian)
[14616.936827] WARNING: CPU: 6 PID: 1711 at drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c:1762 amdgpu_vm_bo_del+0x399/0x3f0 [amdgpu]
[14616.937096] Call Trace:
[14616.937097] <TASK>
[14616.937102] amdgpu_driver_postclose_kms+0x249/0x2f0 [amdgpu]
[14616.937187] drm_file_free+0x1d6/0x300 [drm]
[14616.937207] drm_close_helper.isra.0+0x62/0x70 [drm]
[14616.937220] drm_release+0x5e/0x100 [drm]
[14616.937234] __fput+0x9f/0x280
[14616.937239] ____fput+0xe/0x20
[14616.937241] task_work_run+0x61/0x90
[14616.937246] exit_to_user_mode_prepare+0x215/0x220
[14616.937251] syscall_exit_to_user_mode+0x2a/0x60
[14616.937254] do_syscall_64+0x48/0x90
[14616.937257] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Make intel_get_crtc_new_encoder() less oopsy
The point of the WARN was to print something, not oops
straight up. Currently that is precisely what happens
if we can't find the connector for the crtc in the atomic
state. Get the dev pointer from the atomic state instead
of the potentially NULL encoder to avoid that.
(cherry picked from commit 3b6692357f70498f617ea1b31a0378070a0acf1c) |
In the Linux kernel, the following vulnerability has been resolved:
gpio: mvebu: fix irq domain leak
Uwe Kleine-König pointed out we still have one resource leak in the mvebu
driver triggered on driver detach. Let's address it with a custom devm
action. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix deadlock in tc route query code
Cited commit causes ABBA deadlock[0] when peer flows are created while
holding the devcom rw semaphore. Due to peer flows offload implementation
the lock is taken much higher up the call chain and there is no obvious way
to easily fix the deadlock. Instead, since tc route query code needs the
peer eswitch structure only to perform a lookup in xarray and doesn't
perform any sleeping operations with it, refactor the code for lockless
execution in following ways:
- RCUify the devcom 'data' pointer. When resetting the pointer
synchronously wait for RCU grace period before returning. This is fine
since devcom is currently only used for synchronization of
pairing/unpairing of eswitches which is rare and already expensive as-is.
- Wrap all usages of 'paired' boolean in {READ|WRITE}_ONCE(). The flag has
already been used in some unlocked contexts without proper
annotations (e.g. users of mlx5_devcom_is_paired() function), but it wasn't
an issue since all relevant code paths checked it again after obtaining the
devcom semaphore. Now it is also used by mlx5_devcom_get_peer_data_rcu() as
"best effort" check to return NULL when devcom is being unpaired. Note that
while RCU read lock doesn't prevent the unpaired flag from being changed
concurrently it still guarantees that reader can continue to use 'data'.
- Refactor mlx5e_tc_query_route_vport() function to use new
mlx5_devcom_get_peer_data_rcu() API which fixes the deadlock.
[0]:
[ 164.599612] ======================================================
[ 164.600142] WARNING: possible circular locking dependency detected
[ 164.600667] 6.3.0-rc3+ #1 Not tainted
[ 164.601021] ------------------------------------------------------
[ 164.601557] handler1/3456 is trying to acquire lock:
[ 164.601998] ffff88811f1714b0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}, at: mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core]
[ 164.603078]
but task is already holding lock:
[ 164.603617] ffff88810137fc98 (&comp->sem){++++}-{3:3}, at: mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core]
[ 164.604459]
which lock already depends on the new lock.
[ 164.605190]
the existing dependency chain (in reverse order) is:
[ 164.605848]
-> #1 (&comp->sem){++++}-{3:3}:
[ 164.606380] down_read+0x39/0x50
[ 164.606772] mlx5_devcom_get_peer_data+0x37/0x80 [mlx5_core]
[ 164.607336] mlx5e_tc_query_route_vport+0x86/0xc0 [mlx5_core]
[ 164.607914] mlx5e_tc_tun_route_lookup+0x1a4/0x1d0 [mlx5_core]
[ 164.608495] mlx5e_attach_decap_route+0xc6/0x1e0 [mlx5_core]
[ 164.609063] mlx5e_tc_add_fdb_flow+0x1ea/0x360 [mlx5_core]
[ 164.609627] __mlx5e_add_fdb_flow+0x2d2/0x430 [mlx5_core]
[ 164.610175] mlx5e_configure_flower+0x952/0x1a20 [mlx5_core]
[ 164.610741] tc_setup_cb_add+0xd4/0x200
[ 164.611146] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower]
[ 164.611661] fl_change+0xc95/0x18a0 [cls_flower]
[ 164.612116] tc_new_tfilter+0x3fc/0xd20
[ 164.612516] rtnetlink_rcv_msg+0x418/0x5b0
[ 164.612936] netlink_rcv_skb+0x54/0x100
[ 164.613339] netlink_unicast+0x190/0x250
[ 164.613746] netlink_sendmsg+0x245/0x4a0
[ 164.614150] sock_sendmsg+0x38/0x60
[ 164.614522] ____sys_sendmsg+0x1d0/0x1e0
[ 164.614934] ___sys_sendmsg+0x80/0xc0
[ 164.615320] __sys_sendmsg+0x51/0x90
[ 164.615701] do_syscall_64+0x3d/0x90
[ 164.616083] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 164.616568]
-> #0 (&esw->offloads.encap_tbl_lock){+.+.}-{3:3}:
[ 164.617210] __lock_acquire+0x159e/0x26e0
[ 164.617638] lock_acquire+0xc2/0x2a0
[ 164.618018] __mutex_lock+0x92/0xcd0
[ 164.618401] mlx5e_attach_encap+0xd8/0x8b0 [mlx5_core]
[ 164.618943] post_process_attr+0x153/0x2d0 [
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
gpio: sifive: Fix refcount leak in sifive_gpio_probe
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - Fix missing initialisation affecting gcm-aes-s390
Fix af_alg_alloc_areq() to initialise areq->first_rsgl.sgl.sgt.sgl to point
to the scatterlist array in areq->first_rsgl.sgl.sgl.
Without this, the gcm-aes-s390 driver will oops when it tries to do
gcm_walk_start() on req->dst because req->dst is set to the value of
areq->first_rsgl.sgl.sgl by _aead_recvmsg() calling
aead_request_set_crypt().
The problem comes if an empty ciphertext is passed: the loop in
af_alg_get_rsgl() just passes straight out and doesn't set areq->first_rsgl
up.
This isn't a problem on x86_64 using gcmaes_crypt_by_sg() because, as far
as I can tell, that ignores req->dst and only uses req->src[*].
[*] Is this a bug in aesni-intel_glue.c?
The s390x oops looks something like:
Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0000000a00000000 TEID: 0000000a00000803
Fault in home space mode while using kernel ASCE.
AS:00000000a43a0007 R3:0000000000000024
Oops: 003b ilc:2 [#1] SMP
...
Call Trace:
[<000003ff7fc3d47e>] gcm_walk_start+0x16/0x28 [aes_s390]
[<00000000a2a342f2>] crypto_aead_decrypt+0x9a/0xb8
[<00000000a2a60888>] aead_recvmsg+0x478/0x698
[<00000000a2e519a0>] sock_recvmsg+0x70/0xb0
[<00000000a2e51a56>] sock_read_iter+0x76/0xa0
[<00000000a273e066>] vfs_read+0x26e/0x2a8
[<00000000a273e8c4>] ksys_read+0xbc/0x100
[<00000000a311d808>] __do_syscall+0x1d0/0x1f8
[<00000000a312ff30>] system_call+0x70/0x98
Last Breaking-Event-Address:
[<000003ff7fc3e6b4>] gcm_aes_crypt+0x104/0xa68 [aes_s390] |
In the Linux kernel, the following vulnerability has been resolved:
ipmi_si: fix a memleak in try_smi_init()
Kmemleak reported the following leak info in try_smi_init():
unreferenced object 0xffff00018ecf9400 (size 1024):
comm "modprobe", pid 2707763, jiffies 4300851415 (age 773.308s)
backtrace:
[<000000004ca5b312>] __kmalloc+0x4b8/0x7b0
[<00000000953b1072>] try_smi_init+0x148/0x5dc [ipmi_si]
[<000000006460d325>] 0xffff800081b10148
[<0000000039206ea5>] do_one_initcall+0x64/0x2a4
[<00000000601399ce>] do_init_module+0x50/0x300
[<000000003c12ba3c>] load_module+0x7a8/0x9e0
[<00000000c246fffe>] __se_sys_init_module+0x104/0x180
[<00000000eea99093>] __arm64_sys_init_module+0x24/0x30
[<0000000021b1ef87>] el0_svc_common.constprop.0+0x94/0x250
[<0000000070f4f8b7>] do_el0_svc+0x48/0xe0
[<000000005a05337f>] el0_svc+0x24/0x3c
[<000000005eb248d6>] el0_sync_handler+0x160/0x164
[<0000000030a59039>] el0_sync+0x160/0x180
The problem was that when an error occurred before handlers registration
and after allocating `new_smi->si_sm`, the variable wouldn't be freed in
the error handling afterwards since `shutdown_smi()` hadn't been
registered yet. Fix it by adding a `kfree()` in the error handling path
in `try_smi_init()`. |
In the Linux kernel, the following vulnerability has been resolved:
tracing/histograms: Add histograms to hist_vars if they have referenced variables
Hist triggers can have referenced variables without having direct
variables fields. This can be the case if referenced variables are added
for trigger actions. In this case the newly added references will not
have field variables. Not taking such referenced variables into
consideration can result in a bug where it would be possible to remove
hist trigger with variables being refenced. This will result in a bug
that is easily reproducable like so
$ cd /sys/kernel/tracing
$ echo 'synthetic_sys_enter char[] comm; long id' >> synthetic_events
$ echo 'hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
$ echo 'hist:keys=common_pid.execname,id.syscall:onmatch(raw_syscalls.sys_enter).synthetic_sys_enter($comm, id)' >> events/raw_syscalls/sys_enter/trigger
$ echo '!hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger
[ 100.263533] ==================================================================
[ 100.264634] BUG: KASAN: slab-use-after-free in resolve_var_refs+0xc7/0x180
[ 100.265520] Read of size 8 at addr ffff88810375d0f0 by task bash/439
[ 100.266320]
[ 100.266533] CPU: 2 PID: 439 Comm: bash Not tainted 6.5.0-rc1 #4
[ 100.267277] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014
[ 100.268561] Call Trace:
[ 100.268902] <TASK>
[ 100.269189] dump_stack_lvl+0x4c/0x70
[ 100.269680] print_report+0xc5/0x600
[ 100.270165] ? resolve_var_refs+0xc7/0x180
[ 100.270697] ? kasan_complete_mode_report_info+0x80/0x1f0
[ 100.271389] ? resolve_var_refs+0xc7/0x180
[ 100.271913] kasan_report+0xbd/0x100
[ 100.272380] ? resolve_var_refs+0xc7/0x180
[ 100.272920] __asan_load8+0x71/0xa0
[ 100.273377] resolve_var_refs+0xc7/0x180
[ 100.273888] event_hist_trigger+0x749/0x860
[ 100.274505] ? kasan_save_stack+0x2a/0x50
[ 100.275024] ? kasan_set_track+0x29/0x40
[ 100.275536] ? __pfx_event_hist_trigger+0x10/0x10
[ 100.276138] ? ksys_write+0xd1/0x170
[ 100.276607] ? do_syscall_64+0x3c/0x90
[ 100.277099] ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.277771] ? destroy_hist_data+0x446/0x470
[ 100.278324] ? event_hist_trigger_parse+0xa6c/0x3860
[ 100.278962] ? __pfx_event_hist_trigger_parse+0x10/0x10
[ 100.279627] ? __kasan_check_write+0x18/0x20
[ 100.280177] ? mutex_unlock+0x85/0xd0
[ 100.280660] ? __pfx_mutex_unlock+0x10/0x10
[ 100.281200] ? kfree+0x7b/0x120
[ 100.281619] ? ____kasan_slab_free+0x15d/0x1d0
[ 100.282197] ? event_trigger_write+0xac/0x100
[ 100.282764] ? __kasan_slab_free+0x16/0x20
[ 100.283293] ? __kmem_cache_free+0x153/0x2f0
[ 100.283844] ? sched_mm_cid_remote_clear+0xb1/0x250
[ 100.284550] ? __pfx_sched_mm_cid_remote_clear+0x10/0x10
[ 100.285221] ? event_trigger_write+0xbc/0x100
[ 100.285781] ? __kasan_check_read+0x15/0x20
[ 100.286321] ? __bitmap_weight+0x66/0xa0
[ 100.286833] ? _find_next_bit+0x46/0xe0
[ 100.287334] ? task_mm_cid_work+0x37f/0x450
[ 100.287872] event_triggers_call+0x84/0x150
[ 100.288408] trace_event_buffer_commit+0x339/0x430
[ 100.289073] ? ring_buffer_event_data+0x3f/0x60
[ 100.292189] trace_event_raw_event_sys_enter+0x8b/0xe0
[ 100.295434] syscall_trace_enter.constprop.0+0x18f/0x1b0
[ 100.298653] syscall_enter_from_user_mode+0x32/0x40
[ 100.301808] do_syscall_64+0x1a/0x90
[ 100.304748] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 100.307775] RIP: 0033:0x7f686c75c1cb
[ 100.310617] Code: 73 01 c3 48 8b 0d 65 3c 10 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 21 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 3c 10 00 f7 d8 64 89 01 48
[ 100.317847] RSP: 002b:00007ffc60137a38 EFLAGS: 00000246 ORIG_RAX: 0000000000000021
[ 100.321200] RA
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
media: coda: Add check for dcoda_iram_alloc
As the coda_iram_alloc may return NULL pointer,
it should be better to check the return value
in order to avoid NULL poineter dereference,
same as the others. |
In the Linux kernel, the following vulnerability has been resolved:
drbd: only clone bio if we have a backing device
Commit c347a787e34cb (drbd: set ->bi_bdev in drbd_req_new) moved a
bio_set_dev call (which has since been removed) to "earlier", from
drbd_request_prepare to drbd_req_new.
The problem is that this accesses device->ldev->backing_bdev, which is
not NULL-checked at this point. When we don't have an ldev (i.e. when
the DRBD device is diskless), this leads to a null pointer deref.
So, only allocate the private_bio if we actually have a disk. This is
also a small optimization, since we don't clone the bio to only to
immediately free it again in the diskless case. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: reject auth/assoc to AP with our address
If the AP uses our own address as its MLD address or BSSID, then
clearly something's wrong. Reject such connections so we don't
try and fail later. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: DR, fix memory leak in mlx5dr_cmd_create_reformat_ctx
when mlx5_cmd_exec failed in mlx5dr_cmd_create_reformat_ctx, the memory
pointed by 'in' is not released, which will cause memory leak. Move memory
release after mlx5_cmd_exec. |
In the Linux kernel, the following vulnerability has been resolved:
s390/zcrypt: don't leak memory if dev_set_name() fails
When dev_set_name() fails, zcdn_create() doesn't free the newly
allocated resources. Do it. |
In the Linux kernel, the following vulnerability has been resolved:
ext2: Check block size validity during mount
Check that log of block size stored in the superblock has sensible
value. Otherwise the shift computing the block size can overflow leading
to undefined behavior. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't trust firmware n_channels
If the firmware sends us a corrupted MCC response with
n_channels much larger than the command response can be,
we might copy far too much (uninitialized) memory and
even crash if the n_channels is large enough to make it
run out of the one page allocated for the FW response.
Fix that by checking the lengths. Doing a < comparison
would be sufficient, but the firmware should be doing
it correctly, so check more strictly. |