| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/vmci: Clear the vmci transport packet properly when initializing it
In vmci_transport_packet_init memset the vmci_transport_packet before
populating the fields to avoid any uninitialised data being left in the
structure. |
| In the Linux kernel, the following vulnerability has been resolved:
mtk-sd: Prevent memory corruption from DMA map failure
If msdc_prepare_data() fails to map the DMA region, the request is
not prepared for data receiving, but msdc_start_data() proceeds
the DMA with previous setting.
Since this will lead a memory corruption, we have to stop the
request operation soon after the msdc_prepare_data() fails to
prepare it. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: export anon_inode_make_secure_inode() and fix secretmem LSM bypass
Export anon_inode_make_secure_inode() to allow KVM guest_memfd to create
anonymous inodes with proper security context. This replaces the current
pattern of calling alloc_anon_inode() followed by
inode_init_security_anon() for creating security context manually.
This change also fixes a security regression in secretmem where the
S_PRIVATE flag was not cleared after alloc_anon_inode(), causing
LSM/SELinux checks to be bypassed for secretmem file descriptors.
As guest_memfd currently resides in the KVM module, we need to export this
symbol for use outside the core kernel. In the future, guest_memfd might be
moved to core-mm, at which point the symbols no longer would have to be
exported. When/if that happens is still unclear. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: gpio: Fix the out-of-bounds access to drvdata::gpiods
drvdata::gpiods is supposed to hold an array of 'gpio_desc' pointers. But
the memory is allocated for only one pointer. This will lead to
out-of-bounds access later in the code if 'config::ngpios' is > 1. So
fix the code to allocate enough memory to hold 'config::ngpios' of GPIO
descriptors.
While at it, also move the check for memory allocation failure to be below
the allocation to make it more readable. |
| LDAP Account Manager (LAM) is a webfrontend for managing entries stored in an LDAP directory. LAM's log configuration allows to specify arbitrary paths for log files. Prior to version 8.7, an attacker could exploit this by creating a PHP file and cause LAM to log some PHP code to this file. When the file is then accessed via web the code would be executed. The issue is mitigated by the following: An attacker needs to know LAM's master configuration password to be able to change the main settings; and the webserver needs write access to a directory that is accessible via web. LAM itself does not provide any such directories. The issue has been fixed in 8.7. As a workaround, limit access to LAM configuration pages to authorized users.
|
| In the Linux kernel, the following vulnerability has been resolved:
udp: do not accept non-tunnel GSO skbs landing in a tunnel
When rx-udp-gro-forwarding is enabled UDP packets might be GROed when
being forwarded. If such packets might land in a tunnel this can cause
various issues and udp_gro_receive makes sure this isn't the case by
looking for a matching socket. This is performed in
udp4/6_gro_lookup_skb but only in the current netns. This is an issue
with tunneled packets when the endpoint is in another netns. In such
cases the packets will be GROed at the UDP level, which leads to various
issues later on. The same thing can happen with rx-gro-list.
We saw this with geneve packets being GROed at the UDP level. In such
case gso_size is set; later the packet goes through the geneve rx path,
the geneve header is pulled, the offset are adjusted and frag_list skbs
are not adjusted with regard to geneve. When those skbs hit
skb_fragment, it will misbehave. Different outcomes are possible
depending on what the GROed skbs look like; from corrupted packets to
kernel crashes.
One example is a BUG_ON[1] triggered in skb_segment while processing the
frag_list. Because gso_size is wrong (geneve header was pulled)
skb_segment thinks there is "geneve header size" of data in frag_list,
although it's in fact the next packet. The BUG_ON itself has nothing to
do with the issue. This is only one of the potential issues.
Looking up for a matching socket in udp_gro_receive is fragile: the
lookup could be extended to all netns (not speaking about performances)
but nothing prevents those packets from being modified in between and we
could still not find a matching socket. It's OK to keep the current
logic there as it should cover most cases but we also need to make sure
we handle tunnel packets being GROed too early.
This is done by extending the checks in udp_unexpected_gso: GSO packets
lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must
be segmented.
[1] kernel BUG at net/core/skbuff.c:4408!
RIP: 0010:skb_segment+0xd2a/0xf70
__udp_gso_segment+0xaa/0x560 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix infinite recursion in fib6_dump_done().
syzkaller reported infinite recursive calls of fib6_dump_done() during
netlink socket destruction. [1]
From the log, syzkaller sent an AF_UNSPEC RTM_GETROUTE message, and then
the response was generated. The following recvmmsg() resumed the dump
for IPv6, but the first call of inet6_dump_fib() failed at kzalloc() due
to the fault injection. [0]
12:01:34 executing program 3:
r0 = socket$nl_route(0x10, 0x3, 0x0)
sendmsg$nl_route(r0, ... snip ...)
recvmmsg(r0, ... snip ...) (fail_nth: 8)
Here, fib6_dump_done() was set to nlk_sk(sk)->cb.done, and the next call
of inet6_dump_fib() set it to nlk_sk(sk)->cb.args[3]. syzkaller stopped
receiving the response halfway through, and finally netlink_sock_destruct()
called nlk_sk(sk)->cb.done().
fib6_dump_done() calls fib6_dump_end() and nlk_sk(sk)->cb.done() if it
is still not NULL. fib6_dump_end() rewrites nlk_sk(sk)->cb.done() by
nlk_sk(sk)->cb.args[3], but it has the same function, not NULL, calling
itself recursively and hitting the stack guard page.
To avoid the issue, let's set the destructor after kzalloc().
[0]:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 0
CPU: 1 PID: 432110 Comm: syz-executor.3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153)
should_failslab (mm/slub.c:3733)
kmalloc_trace (mm/slub.c:3748 mm/slub.c:3827 mm/slub.c:3992)
inet6_dump_fib (./include/linux/slab.h:628 ./include/linux/slab.h:749 net/ipv6/ip6_fib.c:662)
rtnl_dump_all (net/core/rtnetlink.c:4029)
netlink_dump (net/netlink/af_netlink.c:2269)
netlink_recvmsg (net/netlink/af_netlink.c:1988)
____sys_recvmsg (net/socket.c:1046 net/socket.c:2801)
___sys_recvmsg (net/socket.c:2846)
do_recvmmsg (net/socket.c:2943)
__x64_sys_recvmmsg (net/socket.c:3041 net/socket.c:3034 net/socket.c:3034)
[1]:
BUG: TASK stack guard page was hit at 00000000f2fa9af1 (stack is 00000000b7912430..000000009a436beb)
stack guard page: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 223719 Comm: kworker/1:3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: events netlink_sock_destruct_work
RIP: 0010:fib6_dump_done (net/ipv6/ip6_fib.c:570)
Code: 3c 24 e8 f3 e9 51 fd e9 28 fd ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 41 57 41 56 41 55 41 54 55 48 89 fd <53> 48 8d 5d 60 e8 b6 4d 07 fd 48 89 da 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc9000d980000 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffffff84405990 RCX: ffffffff844059d3
RDX: ffff8881028e0000 RSI: ffffffff84405ac2 RDI: ffff88810c02f358
RBP: ffff88810c02f358 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000224 R12: 0000000000000000
R13: ffff888007c82c78 R14: ffff888007c82c68 R15: ffff888007c82c68
FS: 0000000000000000(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc9000d97fff8 CR3: 0000000102309002 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<#DF>
</#DF>
<TASK>
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
...
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
netlink_sock_destruct (net/netlink/af_netlink.c:401)
__sk_destruct (net/core/sock.c:2177 (discriminator 2))
sk_destruct (net/core/sock.c:2224)
__sk_free (net/core/sock.c:2235)
sk_free (net/core/sock.c:2246)
process_one_work (kernel/workqueue.c:3259)
worker_thread (kernel/workqueue.c:3329 kernel/workqueue.
---truncated--- |
| Tornado is a Python web framework and asynchronous networking library. When Tornado's ``multipart/form-data`` parser encounters certain errors, it logs a warning but continues trying to parse the remainder of the data. This allows remote attackers to generate an extremely high volume of logs, constituting a DoS attack. This DoS is compounded by the fact that the logging subsystem is synchronous. All versions of Tornado prior to 6.5.0 are affected. The vulnerable parser is enabled by default. Upgrade to Tornado version 6.50 to receive a patch. As a workaround, risk can be mitigated by blocking `Content-Type: multipart/form-data` in a proxy. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix not validating setsockopt user input
syzbot reported sco_sock_setsockopt() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90
net/bluetooth/sco.c:893
Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578 |
| Successful exploitation of the vulnerability could allow an attacker with local network access to send a specially crafted URL to access certain administration functions without login credentials. |
| Improper neutralization of input during web page generation ('Cross-site Scripting') (CWE-79) allows an authenticated user to embed a malicious script in content that will be served to web browsers causing cross-site scripting (XSS) (CAPEC-63) via a method in Vega bypassing a previous Vega XSS mitigation. |
| In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: check for dangling peer via is_dead instead of empty list
If all peers are removed via wg_peer_remove_all(), rather than setting
peer_list to empty, the peer is added to a temporary list with a head on
the stack of wg_peer_remove_all(). If a netlink dump is resumed and the
cursored peer is one that has been removed via wg_peer_remove_all(), it
will iterate from that peer and then attempt to dump freed peers.
Fix this by instead checking peer->is_dead, which was explictly created
for this purpose. Also move up the device_update_lock lockdep assertion,
since reading is_dead relies on that.
It can be reproduced by a small script like:
echo "Setting config..."
ip link add dev wg0 type wireguard
wg setconf wg0 /big-config
(
while true; do
echo "Showing config..."
wg showconf wg0 > /dev/null
done
) &
sleep 4
wg setconf wg0 <(printf "[Peer]\nPublicKey=$(wg genkey)\n")
Resulting in:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x182a/0x1b20
Read of size 8 at addr ffff88811956ec70 by task wg/59
CPU: 2 PID: 59 Comm: wg Not tainted 6.8.0-rc2-debug+ #5
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x70
print_address_description.constprop.0+0x2c/0x380
print_report+0xab/0x250
kasan_report+0xba/0xf0
__lock_acquire+0x182a/0x1b20
lock_acquire+0x191/0x4b0
down_read+0x80/0x440
get_peer+0x140/0xcb0
wg_get_device_dump+0x471/0x1130 |
| OS Command injection vulnerability in PublicCMS PublicCMS-V5.202506.a, and PublicCMS-V5.202506.b allowing attackers to execute arbitrary commands via crafted DATABASE, USERNAME, or PASSWORD variables to the backupDB.bat file. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: s390/aes - Fix buffer overread in CTR mode
When processing the last block, the s390 ctr code will always read
a whole block, even if there isn't a whole block of data left. Fix
this by using the actual length left and copy it into a buffer first
for processing. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region()
Do the cache flush of converted pages in svm_register_enc_region() before
dropping kvm->lock to fix use-after-free issues where region and/or its
array of pages could be freed by a different task, e.g. if userspace has
__unregister_enc_region_locked() already queued up for the region.
Note, the "obvious" alternative of using local variables doesn't fully
resolve the bug, as region->pages is also dynamically allocated. I.e. the
region structure itself would be fine, but region->pages could be freed.
Flushing multiple pages under kvm->lock is unfortunate, but the entire
flow is a rare slow path, and the manual flush is only needed on CPUs that
lack coherency for encrypted memory. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes
When moving a station out of a VLAN and deleting the VLAN afterwards, the
fast_rx entry still holds a pointer to the VLAN's netdev, which can cause
use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx
after the VLAN change. |
| In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check return result of sb_min_blocksize
Syzkaller reports an "UBSAN: shift-out-of-bounds in squashfs_bio_read" bug.
Syzkaller forks multiple processes which after mounting the Squashfs
filesystem, issues an ioctl("/dev/loop0", LOOP_SET_BLOCK_SIZE, 0x8000).
Now if this ioctl occurs at the same time another process is in the
process of mounting a Squashfs filesystem on /dev/loop0, the failure
occurs. When this happens the following code in squashfs_fill_super()
fails.
----
msblk->devblksize = sb_min_blocksize(sb, SQUASHFS_DEVBLK_SIZE);
msblk->devblksize_log2 = ffz(~msblk->devblksize);
----
sb_min_blocksize() returns 0, which means msblk->devblksize is set to 0.
As a result, ffz(~msblk->devblksize) returns 64, and msblk->devblksize_log2
is set to 64.
This subsequently causes the
UBSAN: shift-out-of-bounds in fs/squashfs/block.c:195:36
shift exponent 64 is too large for 64-bit type 'u64' (aka
'unsigned long long')
This commit adds a check for a 0 return by sb_min_blocksize(). |
| In the Linux kernel, the following vulnerability has been resolved:
NFC: nci: uart: Set tty->disc_data only in success path
Setting tty->disc_data before opening the NCI device means we need to
clean it up on error paths. This also opens some short window if device
starts sending data, even before NCIUARTSETDRIVER IOCTL succeeded
(broken hardware?). Close the window by exposing tty->disc_data only on
the success path, when opening of the NCI device and try_module_get()
succeeds.
The code differs in error path in one aspect: tty->disc_data won't be
ever assigned thus NULL-ified. This however should not be relevant
difference, because of "tty->disc_data=NULL" in nci_uart_tty_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: lan743x: Modify the EEPROM and OTP size for PCI1xxxx devices
Maximum OTP and EEPROM size for hearthstone PCI1xxxx devices are 8 Kb
and 64 Kb respectively. Adjust max size definitions and return correct
EEPROM length based on device. Also prevent out-of-bound read/write. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Set page uptodate in the correct place
Page cache reads are lockless, so setting the freshly allocated page
uptodate before we've overwritten it with the data it's supposed to have
in it will allow a simultaneous reader to see old data. Move the call
to SetPageUptodate into ubifs_write_end(), which is after we copied the
new data into the page. |