CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: don't access released socket during error recovery
While the error recovery work is temporarily failing reconnect attempts,
running the 'nvme list' command causes a kernel NULL pointer dereference
by calling getsockname() with a released socket.
During error recovery work, the nvme tcp socket is released and a new one
created, so it is not safe to access the socket without proper check. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of remain_skbs
hif_dev->remain_skb is allocated and used exclusively in
ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is
processed and subsequently freed (in error paths) only during the next
call of ath9k_hif_usb_rx_stream().
So, if the urbs are deallocated between those two calls due to the device
deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream()
is not called next time and the allocated remain_skb is leaked. Our local
Syzkaller instance was able to trigger that.
remain_skb makes sense when receiving two consecutive urbs which are
logically linked together, i.e. a specific data field from the first skb
indicates a cached skb to be allocated, memcpy'd with some data and
subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs
deallocation supposedly makes that link irrelevant so we need to free the
cached skb in those cases.
Fix the leak by introducing a function to explicitly free remain_skb (if
it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL
when it has not been allocated at all (hif_dev struct is kzalloced) or
when it has been processed in next call to ath9k_hif_usb_rx_stream().
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: lpass: Fix for KASAN use_after_free out of bounds
When we run syzkaller we get below Out of Bounds error.
"KASAN: slab-out-of-bounds Read in regcache_flat_read"
Below is the backtrace of the issue:
BUG: KASAN: slab-out-of-bounds in regcache_flat_read+0x10c/0x110
Read of size 4 at addr ffffff8088fbf714 by task syz-executor.4/14144
CPU: 6 PID: 14144 Comm: syz-executor.4 Tainted: G W
Hardware name: Qualcomm Technologies, Inc. sc7280 CRD platform (rev5+) (DT)
Call trace:
dump_backtrace+0x0/0x4ec
show_stack+0x34/0x50
dump_stack_lvl+0xdc/0x11c
print_address_description+0x30/0x2d8
kasan_report+0x178/0x1e4
__asan_report_load4_noabort+0x44/0x50
regcache_flat_read+0x10c/0x110
regcache_read+0xf8/0x5a0
_regmap_read+0x45c/0x86c
_regmap_update_bits+0x128/0x290
regmap_update_bits_base+0xc0/0x15c
snd_soc_component_update_bits+0xa8/0x22c
snd_soc_component_write_field+0x68/0xd4
tx_macro_put_dec_enum+0x1d0/0x268
snd_ctl_elem_write+0x288/0x474
By Error checking and checking valid values issue gets rectifies. |
A security vulnerability has been detected in D-Link DI-7001 MINI 24.04.18B1. The affected element is an unknown function of the file /dbsrv.asp. Such manipulation of the argument str leads to buffer overflow. The attack may be launched remotely. The exploit has been disclosed publicly and may be used. |
A security flaw has been discovered in kaifangqian kaifangqian-base up to 7b3faecda13848b3ced6c17c7423b76c5b47b8ab. This issue affects the function getAllUsers of the file kaifangqian-parent/kaifangqian-system/src/main/java/com/kaifangqian/modules/system/controller/SysUserController.java. The manipulation results in information disclosure. The attack can be launched remotely. The exploit has been released to the public and may be exploited. This product does not use versioning. This is why information about affected and unaffected releases are unavailable. |
A vulnerability in Extreme Networks’ Fabric Engine (VOSS) before 9.3 was discovered. When SD-WAN AutoSense is enabled on a port, it may automatically configure fabric connectivity without validating ISIS authentication settings. The SD-WAN AutoSense implementation may be exploited by malicious actors by allowing unauthorized access to network fabric and configuration data. |
In the Linux kernel, the following vulnerability has been resolved:
clk: Fix memory leak in devm_clk_notifier_register()
devm_clk_notifier_register() allocates a devres resource for clk
notifier but didn't register that to the device, so the notifier didn't
get unregistered on device detach and the allocated resource was leaked.
Fix the issue by registering the resource through devres_add().
This issue was found with kmemleak on a Chromebook. |
In the Linux kernel, the following vulnerability has been resolved:
nvme-core: fix dev_pm_qos memleak
Call dev_pm_qos_hide_latency_tolerance() in the error unwind patch to
avoid following kmemleak:-
blktests (master) # kmemleak-clear; ./check nvme/044;
blktests (master) # kmemleak-scan ; kmemleak-show
nvme/044 (Test bi-directional authentication) [passed]
runtime 2.111s ... 2.124s
unreferenced object 0xffff888110c46240 (size 96):
comm "nvme", pid 33461, jiffies 4345365353 (age 75.586s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000069ac2cec>] kmalloc_trace+0x25/0x90
[<000000006acc66d5>] dev_pm_qos_update_user_latency_tolerance+0x6f/0x100
[<00000000cc376ea7>] nvme_init_ctrl+0x38e/0x410 [nvme_core]
[<000000007df61b4b>] 0xffffffffc05e88b3
[<00000000d152b985>] 0xffffffffc05744cb
[<00000000f04a4041>] vfs_write+0xc5/0x3c0
[<00000000f9491baf>] ksys_write+0x5f/0xe0
[<000000001c46513d>] do_syscall_64+0x3b/0x90
[<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
In the Linux kernel, the following vulnerability has been resolved:
KVM: nSVM: Check instead of asserting on nested TSC scaling support
Check for nested TSC scaling support on nested SVM VMRUN instead of
asserting that TSC scaling is exposed to L1 if L1's MSR_AMD64_TSC_RATIO
has diverged from KVM's default. Userspace can trigger the WARN at will
by writing the MSR and then updating guest CPUID to hide the feature
(modifying guest CPUID is allowed anytime before KVM_RUN). E.g. hacking
KVM's state_test selftest to do
vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0);
vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR);
after restoring state in a new VM+vCPU yields an endless supply of:
------------[ cut here ]------------
WARNING: CPU: 164 PID: 62565 at arch/x86/kvm/svm/nested.c:699
nested_vmcb02_prepare_control+0x3d6/0x3f0 [kvm_amd]
Call Trace:
<TASK>
enter_svm_guest_mode+0x114/0x560 [kvm_amd]
nested_svm_vmrun+0x260/0x330 [kvm_amd]
vmrun_interception+0x29/0x30 [kvm_amd]
svm_invoke_exit_handler+0x35/0x100 [kvm_amd]
svm_handle_exit+0xe7/0x180 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm]
kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm]
__se_sys_ioctl+0x7a/0xc0
__x64_sys_ioctl+0x21/0x30
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x45ca1b
Note, the nested #VMEXIT path has the same flaw, but needs a different
fix and will be handled separately. |
In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: Don't migrate perf to the CPU going to teardown
The driver needs to migrate the perf context if the current using CPU going
to teardown. By the time calling the cpuhp::teardown() callback the
cpu_online_mask() hasn't updated yet and still includes the CPU going to
teardown. In current driver's implementation we may migrate the context
to the teardown CPU and leads to the below calltrace:
...
[ 368.104662][ T932] task:cpuhp/0 state:D stack: 0 pid: 15 ppid: 2 flags:0x00000008
[ 368.113699][ T932] Call trace:
[ 368.116834][ T932] __switch_to+0x7c/0xbc
[ 368.120924][ T932] __schedule+0x338/0x6f0
[ 368.125098][ T932] schedule+0x50/0xe0
[ 368.128926][ T932] schedule_preempt_disabled+0x18/0x24
[ 368.134229][ T932] __mutex_lock.constprop.0+0x1d4/0x5dc
[ 368.139617][ T932] __mutex_lock_slowpath+0x1c/0x30
[ 368.144573][ T932] mutex_lock+0x50/0x60
[ 368.148579][ T932] perf_pmu_migrate_context+0x84/0x2b0
[ 368.153884][ T932] hisi_pcie_pmu_offline_cpu+0x90/0xe0 [hisi_pcie_pmu]
[ 368.160579][ T932] cpuhp_invoke_callback+0x2a0/0x650
[ 368.165707][ T932] cpuhp_thread_fun+0xe4/0x190
[ 368.170316][ T932] smpboot_thread_fn+0x15c/0x1a0
[ 368.175099][ T932] kthread+0x108/0x13c
[ 368.179012][ T932] ret_from_fork+0x10/0x18
...
Use function cpumask_any_but() to find one correct active cpu to fixes
this issue. |
In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix out-of-bounds when setting channels on remove
If we set channels greater during iavf_remove(), and waiting reset done
would be timeout, then returned with error but changed num_active_queues
directly, that will lead to OOB like the following logs. Because the
num_active_queues is greater than tx/rx_rings[] allocated actually.
Reproducer:
[root@host ~]# cat repro.sh
#!/bin/bash
pf_dbsf="0000:41:00.0"
vf0_dbsf="0000:41:02.0"
g_pids=()
function do_set_numvf()
{
echo 2 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs
sleep $((RANDOM%3+1))
echo 0 >/sys/bus/pci/devices/${pf_dbsf}/sriov_numvfs
sleep $((RANDOM%3+1))
}
function do_set_channel()
{
local nic=$(ls -1 --indicator-style=none /sys/bus/pci/devices/${vf0_dbsf}/net/)
[ -z "$nic" ] && { sleep $((RANDOM%3)) ; return 1; }
ifconfig $nic 192.168.18.5 netmask 255.255.255.0
ifconfig $nic up
ethtool -L $nic combined 1
ethtool -L $nic combined 4
sleep $((RANDOM%3))
}
function on_exit()
{
local pid
for pid in "${g_pids[@]}"; do
kill -0 "$pid" &>/dev/null && kill "$pid" &>/dev/null
done
g_pids=()
}
trap "on_exit; exit" EXIT
while :; do do_set_numvf ; done &
g_pids+=($!)
while :; do do_set_channel ; done &
g_pids+=($!)
wait
Result:
[ 3506.152887] iavf 0000:41:02.0: Removing device
[ 3510.400799] ==================================================================
[ 3510.400820] BUG: KASAN: slab-out-of-bounds in iavf_free_all_tx_resources+0x156/0x160 [iavf]
[ 3510.400823] Read of size 8 at addr ffff88b6f9311008 by task repro.sh/55536
[ 3510.400823]
[ 3510.400830] CPU: 101 PID: 55536 Comm: repro.sh Kdump: loaded Tainted: G O --------- -t - 4.18.0 #1
[ 3510.400832] Hardware name: Powerleader PR2008AL/H12DSi-N6, BIOS 2.0 04/09/2021
[ 3510.400835] Call Trace:
[ 3510.400851] dump_stack+0x71/0xab
[ 3510.400860] print_address_description+0x6b/0x290
[ 3510.400865] ? iavf_free_all_tx_resources+0x156/0x160 [iavf]
[ 3510.400868] kasan_report+0x14a/0x2b0
[ 3510.400873] iavf_free_all_tx_resources+0x156/0x160 [iavf]
[ 3510.400880] iavf_remove+0x2b6/0xc70 [iavf]
[ 3510.400884] ? iavf_free_all_rx_resources+0x160/0x160 [iavf]
[ 3510.400891] ? wait_woken+0x1d0/0x1d0
[ 3510.400895] ? notifier_call_chain+0xc1/0x130
[ 3510.400903] pci_device_remove+0xa8/0x1f0
[ 3510.400910] device_release_driver_internal+0x1c6/0x460
[ 3510.400916] pci_stop_bus_device+0x101/0x150
[ 3510.400919] pci_stop_and_remove_bus_device+0xe/0x20
[ 3510.400924] pci_iov_remove_virtfn+0x187/0x420
[ 3510.400927] ? pci_iov_add_virtfn+0xe10/0xe10
[ 3510.400929] ? pci_get_subsys+0x90/0x90
[ 3510.400932] sriov_disable+0xed/0x3e0
[ 3510.400936] ? bus_find_device+0x12d/0x1a0
[ 3510.400953] i40e_free_vfs+0x754/0x1210 [i40e]
[ 3510.400966] ? i40e_reset_all_vfs+0x880/0x880 [i40e]
[ 3510.400968] ? pci_get_device+0x7c/0x90
[ 3510.400970] ? pci_get_subsys+0x90/0x90
[ 3510.400982] ? pci_vfs_assigned.part.7+0x144/0x210
[ 3510.400987] ? __mutex_lock_slowpath+0x10/0x10
[ 3510.400996] i40e_pci_sriov_configure+0x1fa/0x2e0 [i40e]
[ 3510.401001] sriov_numvfs_store+0x214/0x290
[ 3510.401005] ? sriov_totalvfs_show+0x30/0x30
[ 3510.401007] ? __mutex_lock_slowpath+0x10/0x10
[ 3510.401011] ? __check_object_size+0x15a/0x350
[ 3510.401018] kernfs_fop_write+0x280/0x3f0
[ 3510.401022] vfs_write+0x145/0x440
[ 3510.401025] ksys_write+0xab/0x160
[ 3510.401028] ? __ia32_sys_read+0xb0/0xb0
[ 3510.401031] ? fput_many+0x1a/0x120
[ 3510.401032] ? filp_close+0xf0/0x130
[ 3510.401038] do_syscall_64+0xa0/0x370
[ 3510.401041] ? page_fault+0x8/0x30
[ 3510.401043] entry_SYSCALL_64_after_hwframe+0x65/0xca
[ 3510.401073] RIP: 0033:0x7f3a9bb842c0
[ 3510.401079] Code: 73 01 c3 48 8b 0d d8 cb 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 89 24 2d 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
tun: Fix memory leak for detached NAPI queue.
syzkaller reported [0] memory leaks of sk and skb related to the TUN
device with no repro, but we can reproduce it easily with:
struct ifreq ifr = {}
int fd_tun, fd_tmp;
char buf[4] = {};
fd_tun = openat(AT_FDCWD, "/dev/net/tun", O_WRONLY, 0);
ifr.ifr_flags = IFF_TUN | IFF_NAPI | IFF_MULTI_QUEUE;
ioctl(fd_tun, TUNSETIFF, &ifr);
ifr.ifr_flags = IFF_DETACH_QUEUE;
ioctl(fd_tun, TUNSETQUEUE, &ifr);
fd_tmp = socket(AF_PACKET, SOCK_PACKET, 0);
ifr.ifr_flags = IFF_UP;
ioctl(fd_tmp, SIOCSIFFLAGS, &ifr);
write(fd_tun, buf, sizeof(buf));
close(fd_tun);
If we enable NAPI and multi-queue on a TUN device, we can put skb into
tfile->sk.sk_write_queue after the queue is detached. We should prevent
it by checking tfile->detached before queuing skb.
Note this must be done under tfile->sk.sk_write_queue.lock because write()
and ioctl(IFF_DETACH_QUEUE) can run concurrently. Otherwise, there would
be a small race window:
write() ioctl(IFF_DETACH_QUEUE)
`- tun_get_user `- __tun_detach
|- if (tfile->detached) |- tun_disable_queue
| `-> false | `- tfile->detached = tun
| `- tun_queue_purge
|- spin_lock_bh(&queue->lock)
`- __skb_queue_tail(queue, skb)
Another solution is to call tun_queue_purge() when closing and
reattaching the detached queue, but it could paper over another
problems. Also, we do the same kind of test for IFF_NAPI_FRAGS.
[0]:
unreferenced object 0xffff88801edbc800 (size 2048):
comm "syz-executor.1", pid 33269, jiffies 4295743834 (age 18.756s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............
backtrace:
[<000000008c16ea3d>] __do_kmalloc_node mm/slab_common.c:965 [inline]
[<000000008c16ea3d>] __kmalloc+0x4a/0x130 mm/slab_common.c:979
[<000000003addde56>] kmalloc include/linux/slab.h:563 [inline]
[<000000003addde56>] sk_prot_alloc+0xef/0x1b0 net/core/sock.c:2035
[<000000003e20621f>] sk_alloc+0x36/0x2f0 net/core/sock.c:2088
[<0000000028e43843>] tun_chr_open+0x3d/0x190 drivers/net/tun.c:3438
[<000000001b0f1f28>] misc_open+0x1a6/0x1f0 drivers/char/misc.c:165
[<000000004376f706>] chrdev_open+0x111/0x300 fs/char_dev.c:414
[<00000000614d379f>] do_dentry_open+0x2f9/0x750 fs/open.c:920
[<000000008eb24774>] do_open fs/namei.c:3636 [inline]
[<000000008eb24774>] path_openat+0x143f/0x1a30 fs/namei.c:3791
[<00000000955077b5>] do_filp_open+0xce/0x1c0 fs/namei.c:3818
[<00000000b78973b0>] do_sys_openat2+0xf0/0x260 fs/open.c:1356
[<00000000057be699>] do_sys_open fs/open.c:1372 [inline]
[<00000000057be699>] __do_sys_openat fs/open.c:1388 [inline]
[<00000000057be699>] __se_sys_openat fs/open.c:1383 [inline]
[<00000000057be699>] __x64_sys_openat+0x83/0xf0 fs/open.c:1383
[<00000000a7d2182d>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<00000000a7d2182d>] do_syscall_64+0x3c/0x90 arch/x86/entry/common.c:80
[<000000004cc4e8c4>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
unreferenced object 0xffff88802f671700 (size 240):
comm "syz-executor.1", pid 33269, jiffies 4295743854 (age 18.736s)
hex dump (first 32 bytes):
68 c9 db 1e 80 88 ff ff 68 c9 db 1e 80 88 ff ff h.......h.......
00 c0 7b 2f 80 88 ff ff 00 c8 db 1e 80 88 ff ff ..{/............
backtrace:
[<00000000e9d9fdb6>] __alloc_skb+0x223/0x250 net/core/skbuff.c:644
[<000000002c3e4e0b>] alloc_skb include/linux/skbuff.h:1288 [inline]
[<000000002c3e4e0b>] alloc_skb_with_frags+0x6f/0x350 net/core/skbuff.c:6378
[<00000000825f98d7>] sock_alloc_send_pskb+0x3ac/0x3e0 net/core/sock.c:2729
[<00000000e9eb3df3>] tun_alloc_skb drivers/net/tun.c:1529 [inline]
[<
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net/handshake: fix null-ptr-deref in handshake_nl_done_doit()
We should not call trace_handshake_cmd_done_err() if socket lookup has failed.
Also we should call trace_handshake_cmd_done_err() before releasing the file,
otherwise dereferencing sock->sk can return garbage.
This also reverts 7afc6d0a107f ("net/handshake: Fix uninitialized local variable")
Unable to handle kernel paging request at virtual address dfff800000000003
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
Data abort info:
ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[dfff800000000003] address between user and kernel address ranges
Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 5986 Comm: syz-executor292 Not tainted 6.5.0-rc7-syzkaller-gfe4469582053 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : handshake_nl_done_doit+0x198/0x9c8 net/handshake/netlink.c:193
lr : handshake_nl_done_doit+0x180/0x9c8
sp : ffff800096e37180
x29: ffff800096e37200 x28: 1ffff00012dc6e34 x27: dfff800000000000
x26: ffff800096e373d0 x25: 0000000000000000 x24: 00000000ffffffa8
x23: ffff800096e373f0 x22: 1ffff00012dc6e38 x21: 0000000000000000
x20: ffff800096e371c0 x19: 0000000000000018 x18: 0000000000000000
x17: 0000000000000000 x16: ffff800080516cc4 x15: 0000000000000001
x14: 1fffe0001b14aa3b x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000003
x8 : 0000000000000003 x7 : ffff800080afe47c x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffff800080a88078
x2 : 0000000000000001 x1 : 00000000ffffffa8 x0 : 0000000000000000
Call trace:
handshake_nl_done_doit+0x198/0x9c8 net/handshake/netlink.c:193
genl_family_rcv_msg_doit net/netlink/genetlink.c:970 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1050 [inline]
genl_rcv_msg+0x96c/0xc50 net/netlink/genetlink.c:1067
netlink_rcv_skb+0x214/0x3c4 net/netlink/af_netlink.c:2549
genl_rcv+0x38/0x50 net/netlink/genetlink.c:1078
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x660/0x8d4 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x834/0xb18 net/netlink/af_netlink.c:1914
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg net/socket.c:748 [inline]
____sys_sendmsg+0x56c/0x840 net/socket.c:2494
___sys_sendmsg net/socket.c:2548 [inline]
__sys_sendmsg+0x26c/0x33c net/socket.c:2577
__do_sys_sendmsg net/socket.c:2586 [inline]
__se_sys_sendmsg net/socket.c:2584 [inline]
__arm64_sys_sendmsg+0x80/0x94 net/socket.c:2584
__invoke_syscall arch/arm64/kernel/syscall.c:37 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:51
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:136
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:155
el0_svc+0x58/0x16c arch/arm64/kernel/entry-common.c:678
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:696
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:591
Code: 12800108 b90043e8 910062b3 d343fe68 (387b6908) |
In the Linux kernel, the following vulnerability has been resolved:
srcu: Delegate work to the boot cpu if using SRCU_SIZE_SMALL
Commit 994f706872e6 ("srcu: Make Tree SRCU able to operate without
snp_node array") assumes that cpu 0 is always online. However, there
really are situations when some other CPU is the boot CPU, for example,
when booting a kdump kernel with the maxcpus=1 boot parameter.
On PowerPC, the kdump kernel can hang as follows:
...
[ 1.740036] systemd[1]: Hostname set to <xyz.com>
[ 243.686240] INFO: task systemd:1 blocked for more than 122 seconds.
[ 243.686264] Not tainted 6.1.0-rc1 #1
[ 243.686272] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 243.686281] task:systemd state:D stack:0 pid:1 ppid:0 flags:0x00042000
[ 243.686296] Call Trace:
[ 243.686301] [c000000016657640] [c000000016657670] 0xc000000016657670 (unreliable)
[ 243.686317] [c000000016657830] [c00000001001dec0] __switch_to+0x130/0x220
[ 243.686333] [c000000016657890] [c000000010f607b8] __schedule+0x1f8/0x580
[ 243.686347] [c000000016657940] [c000000010f60bb4] schedule+0x74/0x140
[ 243.686361] [c0000000166579b0] [c000000010f699b8] schedule_timeout+0x168/0x1c0
[ 243.686374] [c000000016657a80] [c000000010f61de8] __wait_for_common+0x148/0x360
[ 243.686387] [c000000016657b20] [c000000010176bb0] __flush_work.isra.0+0x1c0/0x3d0
[ 243.686401] [c000000016657bb0] [c0000000105f2768] fsnotify_wait_marks_destroyed+0x28/0x40
[ 243.686415] [c000000016657bd0] [c0000000105f21b8] fsnotify_destroy_group+0x68/0x160
[ 243.686428] [c000000016657c40] [c0000000105f6500] inotify_release+0x30/0xa0
[ 243.686440] [c000000016657cb0] [c0000000105751a8] __fput+0xc8/0x350
[ 243.686452] [c000000016657d00] [c00000001017d524] task_work_run+0xe4/0x170
[ 243.686464] [c000000016657d50] [c000000010020e94] do_notify_resume+0x134/0x140
[ 243.686478] [c000000016657d80] [c00000001002eb18] interrupt_exit_user_prepare_main+0x198/0x270
[ 243.686493] [c000000016657de0] [c00000001002ec60] syscall_exit_prepare+0x70/0x180
[ 243.686505] [c000000016657e10] [c00000001000bf7c] system_call_vectored_common+0xfc/0x280
[ 243.686520] --- interrupt: 3000 at 0x7fffa47d5ba4
[ 243.686528] NIP: 00007fffa47d5ba4 LR: 0000000000000000 CTR: 0000000000000000
[ 243.686538] REGS: c000000016657e80 TRAP: 3000 Not tainted (6.1.0-rc1)
[ 243.686548] MSR: 800000000000d033 <SF,EE,PR,ME,IR,DR,RI,LE> CR: 42044440 XER: 00000000
[ 243.686572] IRQMASK: 0
[ 243.686572] GPR00: 0000000000000006 00007ffffa606710 00007fffa48e7200 0000000000000000
[ 243.686572] GPR04: 0000000000000002 000000000000000a 0000000000000000 0000000000000001
[ 243.686572] GPR08: 000001000c172dd0 0000000000000000 0000000000000000 0000000000000000
[ 243.686572] GPR12: 0000000000000000 00007fffa4ff4bc0 0000000000000000 0000000000000000
[ 243.686572] GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[ 243.686572] GPR20: 0000000132dfdc50 000000000000000e 0000000000189375 0000000000000000
[ 243.686572] GPR24: 00007ffffa606ae0 0000000000000005 000001000c185490 000001000c172570
[ 243.686572] GPR28: 000001000c172990 000001000c184850 000001000c172e00 00007fffa4fedd98
[ 243.686683] NIP [00007fffa47d5ba4] 0x7fffa47d5ba4
[ 243.686691] LR [0000000000000000] 0x0
[ 243.686698] --- interrupt: 3000
[ 243.686708] INFO: task kworker/u16:1:24 blocked for more than 122 seconds.
[ 243.686717] Not tainted 6.1.0-rc1 #1
[ 243.686724] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 243.686733] task:kworker/u16:1 state:D stack:0 pid:24 ppid:2 flags:0x00000800
[ 243.686747] Workqueue: events_unbound fsnotify_mark_destroy_workfn
[ 243.686758] Call Trace:
[ 243.686762] [c0000000166736e0] [c00000004fd91000] 0xc00000004fd91000 (unreliable)
[ 243.686775] [c0000000166738d0] [c00000001001dec0] __switch_to+0x130/0x220
[ 243.686788] [c000000016673930] [c000000010f607b8] __schedule+0x1f8/0x
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: call disconnect callback before deleting conn
In hci_cs_disconnect, we do hci_conn_del even if disconnection failed.
ISO, L2CAP and SCO connections refer to the hci_conn without
hci_conn_get, so disconn_cfm must be called so they can clean up their
conn, otherwise use-after-free occurs.
ISO:
==========================================================
iso_sock_connect:880: sk 00000000eabd6557
iso_connect_cis:356: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7e:da
...
iso_conn_add:140: hcon 000000001696f1fd conn 00000000b6251073
hci_dev_put:1487: hci0 orig refcnt 17
__iso_chan_add:214: conn 00000000b6251073
iso_sock_clear_timer:117: sock 00000000eabd6557 state 3
...
hci_rx_work:4085: hci0 Event packet
hci_event_packet:7601: hci0: event 0x0f
hci_cmd_status_evt:4346: hci0: opcode 0x0406
hci_cs_disconnect:2760: hci0: status 0x0c
hci_sent_cmd_data:3107: hci0 opcode 0x0406
hci_conn_del:1151: hci0 hcon 000000001696f1fd handle 2560
hci_conn_unlink:1102: hci0: hcon 000000001696f1fd
hci_conn_drop:1451: hcon 00000000d8521aaf orig refcnt 2
hci_chan_list_flush:2780: hcon 000000001696f1fd
hci_dev_put:1487: hci0 orig refcnt 21
hci_dev_put:1487: hci0 orig refcnt 20
hci_req_cmd_complete:3978: opcode 0x0406 status 0x0c
... <no iso_* activity on sk/conn> ...
iso_sock_sendmsg:1098: sock 00000000dea5e2e0, sk 00000000eabd6557
BUG: kernel NULL pointer dereference, address: 0000000000000668
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
RIP: 0010:iso_sock_sendmsg (net/bluetooth/iso.c:1112) bluetooth
==========================================================
L2CAP:
==================================================================
hci_cmd_status_evt:4359: hci0: opcode 0x0406
hci_cs_disconnect:2760: hci0: status 0x0c
hci_sent_cmd_data:3085: hci0 opcode 0x0406
hci_conn_del:1151: hci0 hcon ffff88800c999000 handle 3585
hci_conn_unlink:1102: hci0: hcon ffff88800c999000
hci_chan_list_flush:2780: hcon ffff88800c999000
hci_chan_del:2761: hci0 hcon ffff88800c999000 chan ffff888018ddd280
...
BUG: KASAN: slab-use-after-free in hci_send_acl+0x2d/0x540 [bluetooth]
Read of size 8 at addr ffff888018ddd298 by task bluetoothd/1175
CPU: 0 PID: 1175 Comm: bluetoothd Tainted: G E 6.4.0-rc4+ #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x90
print_report+0xcf/0x670
? __virt_addr_valid+0xf8/0x180
? hci_send_acl+0x2d/0x540 [bluetooth]
kasan_report+0xa8/0xe0
? hci_send_acl+0x2d/0x540 [bluetooth]
hci_send_acl+0x2d/0x540 [bluetooth]
? __pfx___lock_acquire+0x10/0x10
l2cap_chan_send+0x1fd/0x1300 [bluetooth]
? l2cap_sock_sendmsg+0xf2/0x170 [bluetooth]
? __pfx_l2cap_chan_send+0x10/0x10 [bluetooth]
? lock_release+0x1d5/0x3c0
? mark_held_locks+0x1a/0x90
l2cap_sock_sendmsg+0x100/0x170 [bluetooth]
sock_write_iter+0x275/0x280
? __pfx_sock_write_iter+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
do_iter_readv_writev+0x176/0x220
? __pfx_do_iter_readv_writev+0x10/0x10
? find_held_lock+0x83/0xa0
? selinux_file_permission+0x13e/0x210
do_iter_write+0xda/0x340
vfs_writev+0x1b4/0x400
? __pfx_vfs_writev+0x10/0x10
? __seccomp_filter+0x112/0x750
? populate_seccomp_data+0x182/0x220
? __fget_light+0xdf/0x100
? do_writev+0x19d/0x210
do_writev+0x19d/0x210
? __pfx_do_writev+0x10/0x10
? mark_held_locks+0x1a/0x90
do_syscall_64+0x60/0x90
? lockdep_hardirqs_on_prepare+0x149/0x210
? do_syscall_64+0x6c/0x90
? lockdep_hardirqs_on_prepare+0x149/0x210
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7ff45cb23e64
Code: 15 d1 1f 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 80 3d 9d a7 0d 00 00 74 13 b8 14 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 89 54 24 1c 48 89
RSP: 002b:00007fff21ae09b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000014
RAX: ffffffffffffffda RBX:
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Fix possible desc_ptr out-of-bounds accesses
Sanitize possible desc_ptr out-of-bounds accesses in
ses_enclosure_data_process(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix system suspend without fbdev being initialized
If fbdev is not initialized for some reason - in practice on platforms
without display - suspending fbdev should be skipped during system
suspend, fix this up. While at it add an assert that suspending fbdev
only happens with the display present.
This fixes the following:
[ 91.227923] PM: suspend entry (s2idle)
[ 91.254598] Filesystems sync: 0.025 seconds
[ 91.270518] Freezing user space processes
[ 91.272266] Freezing user space processes completed (elapsed 0.001 seconds)
[ 91.272686] OOM killer disabled.
[ 91.272872] Freezing remaining freezable tasks
[ 91.274295] Freezing remaining freezable tasks completed (elapsed 0.001 seconds)
[ 91.659622] BUG: kernel NULL pointer dereference, address: 00000000000001c8
[ 91.659981] #PF: supervisor write access in kernel mode
[ 91.660252] #PF: error_code(0x0002) - not-present page
[ 91.660511] PGD 0 P4D 0
[ 91.660647] Oops: 0002 [#1] PREEMPT SMP NOPTI
[ 91.660875] CPU: 4 PID: 917 Comm: bash Not tainted 6.2.0-rc7+ #54
[ 91.661185] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20221117gitfff6d81270b5-9.fc37 unknown
[ 91.661680] RIP: 0010:mutex_lock+0x19/0x30
[ 91.661914] Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 53 48 89 fb e8 62 d3 ff ff 31 c0 65 48 8b 14 25 00 15 03 00 <f0> 48 0f b1 13 75 06 5b c3 cc cc cc cc 48 89 df 5b eb b4 0f 1f 40
[ 91.662840] RSP: 0018:ffffa1e8011ffc08 EFLAGS: 00010246
[ 91.663087] RAX: 0000000000000000 RBX: 00000000000001c8 RCX: 0000000000000000
[ 91.663440] RDX: ffff8be455eb0000 RSI: 0000000000000001 RDI: 00000000000001c8
[ 91.663802] RBP: ffff8be459440000 R08: ffff8be459441f08 R09: ffffffff8e1432c0
[ 91.664167] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
[ 91.664532] R13: 00000000000001c8 R14: 0000000000000000 R15: ffff8be442f4fb20
[ 91.664905] FS: 00007f28ffc16740(0000) GS:ffff8be4bb900000(0000) knlGS:0000000000000000
[ 91.665334] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 91.665626] CR2: 00000000000001c8 CR3: 0000000114926006 CR4: 0000000000770ee0
[ 91.665988] PKRU: 55555554
[ 91.666131] Call Trace:
[ 91.666265] <TASK>
[ 91.666381] intel_fbdev_set_suspend+0x97/0x1b0 [i915]
[ 91.666738] i915_drm_suspend+0xb9/0x100 [i915]
[ 91.667029] pci_pm_suspend+0x78/0x170
[ 91.667234] ? __pfx_pci_pm_suspend+0x10/0x10
[ 91.667461] dpm_run_callback+0x47/0x150
[ 91.667673] __device_suspend+0x10a/0x4e0
[ 91.667880] dpm_suspend+0x134/0x270
[ 91.668069] dpm_suspend_start+0x79/0x80
[ 91.668272] suspend_devices_and_enter+0x11b/0x890
[ 91.668526] pm_suspend.cold+0x270/0x2fc
[ 91.668737] state_store+0x46/0x90
[ 91.668916] kernfs_fop_write_iter+0x11b/0x200
[ 91.669153] vfs_write+0x1e1/0x3a0
[ 91.669336] ksys_write+0x53/0xd0
[ 91.669510] do_syscall_64+0x58/0xc0
[ 91.669699] ? syscall_exit_to_user_mode_prepare+0x18e/0x1c0
[ 91.669980] ? syscall_exit_to_user_mode_prepare+0x18e/0x1c0
[ 91.670278] ? syscall_exit_to_user_mode+0x17/0x40
[ 91.670524] ? do_syscall_64+0x67/0xc0
[ 91.670717] ? __irq_exit_rcu+0x3d/0x140
[ 91.670931] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[ 91.671202] RIP: 0033:0x7f28ffd14284
v2: CC stable. (Jani)
References: https://gitlab.freedesktop.org/drm/intel/-/issues/8015
(cherry picked from commit 9542d708409a41449e99c9a464deb5e062c4bee2) |
IBM InfoSphere Data Replication VSAM for z/OS Remote Source 11.4 is vulnerable to a stack-based buffer overflow, caused by improper bounds checking. A local user with access to the files storing CECSUB or CECRM on the container could overflow the buffer and execute arbitrary code on the system. |
Dell PowerProtect Data Domain BoostFS for Linux Ubuntu systems of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Incorrect Privilege Assignment vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Unauthorized access. |
Wasmtime is a runtime for WebAssembly. Wasmtime 37.0.0 and 37.0.1 have memory leaks in the C/C++ API when using bindings for the `anyref` or `externref` WebAssembly values. This is caused by a regression introduced during the development of 37.0.0 and all prior versions of Wasmtime are unaffected. If `anyref` or `externref` is not used in the C/C++ API then embeddings are also unaffected by the leaky behavior. The `wasmtime` Rust crate is unaffected by this leak.
Development of Wasmtime 37.0.0 included a refactoring in Rust of changing the old `ManuallyRooted<T>` type to a new `OwnedRooted<T>` type. This change was integrated into Wasmtime's C API but left the C API in a state which had memory leaks. Additionally the new ownership semantics around this type were not reflected into the C++ API, making it leak-prone. A short version of the change is that previously `ManuallyRooted<T>`, as the name implies, required manual calls to an "unroot" operation. If this was forgotten then the memory was still cleaned up when the `wasmtime_store_t` itself was destroyed eventually. Documentation of when to "unroot" was sparse and there were already situations prior to 37.0.0 where memory would be leaked until the store was destroyed anyway. All memory, though, was always bound by the store, and destroying the store would guarantee that there were no memory leaks.
In migrating to `OwnedRooted<T>` the usage of the type in Rust changed. A manual "unroot" operation is no longer required and it happens naturally as a destructor of the `OwnedRooted<T>` type in Rust itself. These new resource ownership semantics were not fully integrated into the preexisting semantics of the C/C++ APIs in Wasmtime. A crucial distinction of `OwnedRooted<T>` vs `ManuallyRooted<T>` is that the `OwnedRooted<T>` type allocates host memory outside of the store. This means that if an `OwnedRooted<T>` is leaked then destroying a store does not release this memory and it's a permanent memory leak on the host.
This led to a few distinct, but related, issues arising: A typo in the `wasmtime_val_unroot` function in the C API meant that it did not actually unroot anything. This meant that even if embedders faithfully call the function then memory will be leaked. If a host-defined function returned a `wasmtime_{externref,anyref}_t` value then the value was never unrooted. The C/C++ API no longer has access to the value and the Rust implementation did not unroot. This meant that any values returned this way were never unrooted. The goal of the C++ API of Wasmtime is to encode automatic memory management in the type system, but the C++ API was not updated when `OwnedRooted<T>` was added. This meant that idiomatic usage of the C++ API would leak memory due to a lack of destructors on values.
These issues have all been fixed in a 37.0.2 release of Wasmtime. The implementation of the C and C++ APIs have been updated accordingly and respectively to account for the changes of ownership here. For example `wasmtime_val_unroot` has been fixed to unroot, the Rust-side implementation of calling an embedder-defined function will unroot return values, and the C++ API now has destructors on the `ExternRef`, `AnyRef`, and `Val` types. These changes have been made to the 37.0.x release branch in a non-API-breaking fashion. Changes to the 38.0.0 release branch (and `main` in the Wasmtime repository) include minor API updates to better accommodate the API semantic changes. The only known workaround at this time is to avoid using `externref` and `anyref` in the C/C++ API of Wasmtime. If avoiding those types is not possible then it's required for users to update to mitigate the leak issue. |