| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The PDF reader in Mozilla Firefox before 39.0.3, Firefox ESR 38.x before 38.1.1, and Firefox OS before 2.2 allows remote attackers to bypass the Same Origin Policy, and read arbitrary files or gain privileges, via vectors involving crafted JavaScript code and a native setter, as exploited in the wild in August 2015. |
| Heap-based buffer overflow in Adobe Flash Player before 13.0.0.296 and 14.x through 18.x before 18.0.0.194 on Windows and OS X and before 11.2.202.468 on Linux allows remote attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in June 2015. |
| Adobe Flash Player before 13.0.0.281 and 14.x through 17.x before 17.0.0.169 on Windows and OS X and before 11.2.202.457 on Linux allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, as exploited in the wild in April 2015, a different vulnerability than CVE-2015-0347, CVE-2015-0350, CVE-2015-0352, CVE-2015-0353, CVE-2015-0354, CVE-2015-0355, CVE-2015-0360, CVE-2015-3038, CVE-2015-3041, and CVE-2015-3042. |
| Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-4732. |
| Sudo before 1.9.17p1 allows local users to obtain root access because /etc/nsswitch.conf from a user-controlled directory is used with the --chroot option. |
| An attacker was able to achieve code execution in the content process by exploiting a use-after-free in Animation timelines. We have had reports of this vulnerability being exploited in the wild. This vulnerability affects Firefox < 131.0.2, Firefox ESR < 128.3.1, Firefox ESR < 115.16.1, Thunderbird < 131.0.1, Thunderbird < 128.3.1, and Thunderbird < 115.16.0. |
| A buffer overflow was discovered in the GNU C Library's dynamic loader ld.so while processing the GLIBC_TUNABLES environment variable. This issue could allow a local attacker to use maliciously crafted GLIBC_TUNABLES environment variables when launching binaries with SUID permission to execute code with elevated privileges. |
| The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. |
| .NET and Visual Studio Denial of Service Vulnerability |
| A fully compromised ESXi host can force VMware Tools to fail to authenticate host-to-guest operations, impacting the confidentiality and integrity of the guest virtual machine. |
| It was discovered that a nft object or expression could reference a nft set on a different nft table, leading to a use-after-free once that table was deleted. |
| A flaw was found in Podman. The podman machine init command fails to verify the TLS certificate when downloading the VM images from an OCI registry. This issue results in a Man In The Middle attack. |
| In xfig diagramming tool, a stack-overflow while running fig2dev allows memory corruption via local input manipulation at the bezier_spline function. |
| A flaw was found in linux-pam. The module pam_namespace may use access user-controlled paths without proper protection, allowing local users to elevate their privileges to root via multiple symlink attacks and race conditions. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: E-Switch, pair only capable devices
OFFLOADS paring using devcom is possible only on devices
that support LAG. Filter based on lag capabilities.
This fixes an issue where mlx5_get_next_phys_dev() was
called without holding the interface lock.
This issue was found when commit
bc4c2f2e0179 ("net/mlx5: Lag, filter non compatible devices")
added an assert that verifies the interface lock is held.
WARNING: CPU: 9 PID: 1706 at drivers/net/ethernet/mellanox/mlx5/core/dev.c:642 mlx5_get_next_phys_dev+0xd2/0x100 [mlx5_core]
Modules linked in: mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm ib_uverbs ib_core overlay fuse [last unloaded: mlx5_core]
CPU: 9 PID: 1706 Comm: devlink Not tainted 5.18.0-rc7+ #11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5_get_next_phys_dev+0xd2/0x100 [mlx5_core]
Code: 02 00 75 48 48 8b 85 80 04 00 00 5d c3 31 c0 5d c3 be ff ff ff ff 48 c7 c7 08 41 5b a0 e8 36 87 28 e3 85 c0 0f 85 6f ff ff ff <0f> 0b e9 68 ff ff ff 48 c7 c7 0c 91 cc 84 e8 cb 36 6f e1 e9 4d ff
RSP: 0018:ffff88811bf47458 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88811b398000 RCX: 0000000000000001
RDX: 0000000080000000 RSI: ffffffffa05b4108 RDI: ffff88812daaaa78
RBP: ffff88812d050380 R08: 0000000000000001 R09: ffff88811d6b3437
R10: 0000000000000001 R11: 00000000fddd3581 R12: ffff88815238c000
R13: ffff88812d050380 R14: ffff8881018aa7e0 R15: ffff88811d6b3428
FS: 00007fc82e18ae80(0000) GS:ffff88842e080000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f9630d1b421 CR3: 0000000149802004 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
mlx5_esw_offloads_devcom_event+0x99/0x3b0 [mlx5_core]
mlx5_devcom_send_event+0x167/0x1d0 [mlx5_core]
esw_offloads_enable+0x1153/0x1500 [mlx5_core]
? mlx5_esw_offloads_controller_valid+0x170/0x170 [mlx5_core]
? wait_for_completion_io_timeout+0x20/0x20
? mlx5_rescan_drivers_locked+0x318/0x810 [mlx5_core]
mlx5_eswitch_enable_locked+0x586/0xc50 [mlx5_core]
? mlx5_eswitch_disable_pf_vf_vports+0x1d0/0x1d0 [mlx5_core]
? mlx5_esw_try_lock+0x1b/0xb0 [mlx5_core]
? mlx5_eswitch_enable+0x270/0x270 [mlx5_core]
? __debugfs_create_file+0x260/0x3e0
mlx5_devlink_eswitch_mode_set+0x27e/0x870 [mlx5_core]
? mutex_lock_io_nested+0x12c0/0x12c0
? esw_offloads_disable+0x250/0x250 [mlx5_core]
? devlink_nl_cmd_trap_get_dumpit+0x470/0x470
? rcu_read_lock_sched_held+0x3f/0x70
devlink_nl_cmd_eswitch_set_doit+0x217/0x620 |
| In the Linux kernel, the following vulnerability has been resolved:
ip_gre: test csum_start instead of transport header
GRE with TUNNEL_CSUM will apply local checksum offload on
CHECKSUM_PARTIAL packets.
ipgre_xmit must validate csum_start after an optional skb_pull,
else lco_csum may trigger an overflow. The original check was
if (csum && skb_checksum_start(skb) < skb->data)
return -EINVAL;
This had false positives when skb_checksum_start is undefined:
when ip_summed is not CHECKSUM_PARTIAL. A discussed refinement
was straightforward
if (csum && skb->ip_summed == CHECKSUM_PARTIAL &&
skb_checksum_start(skb) < skb->data)
return -EINVAL;
But was eventually revised more thoroughly:
- restrict the check to the only branch where needed, in an
uncommon GRE path that uses header_ops and calls skb_pull.
- test skb_transport_header, which is set along with csum_start
in skb_partial_csum_set in the normal header_ops datapath.
Turns out skbs can arrive in this branch without the transport
header set, e.g., through BPF redirection.
Revise the check back to check csum_start directly, and only if
CHECKSUM_PARTIAL. Do leave the check in the updated location.
Check field regardless of whether TUNNEL_CSUM is configured. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid cycles in directory h-tree
A maliciously corrupted filesystem can contain cycles in the h-tree
stored inside a directory. That can easily lead to the kernel corrupting
tree nodes that were already verified under its hands while doing a node
split and consequently accessing unallocated memory. Fix the problem by
verifying traversed block numbers are unique. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: filter out EXT4_FC_REPLAY from on-disk superblock field s_state
The EXT4_FC_REPLAY bit in sbi->s_mount_state is used to indicate that
we are in the middle of replay the fast commit journal. This was
actually a mistake, since the sbi->s_mount_info is initialized from
es->s_state. Arguably s_mount_state is misleadingly named, but the
name is historical --- s_mount_state and s_state dates back to ext2.
What should have been used is the ext4_{set,clear,test}_mount_flag()
inline functions, which sets EXT4_MF_* bits in sbi->s_mount_flags.
The problem with using EXT4_FC_REPLAY is that a maliciously corrupted
superblock could result in EXT4_FC_REPLAY getting set in
s_mount_state. This bypasses some sanity checks, and this can trigger
a BUG() in ext4_es_cache_extent(). As a easy-to-backport-fix, filter
out the EXT4_FC_REPLAY bit for now. We should eventually transition
away from EXT4_FC_REPLAY to something like EXT4_MF_REPLAY. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Trap RDMA segment overflows
Prevent svc_rdma_build_writes() from walking off the end of a Write
chunk's segment array. Caught with KASAN.
The test that this fix replaces is invalid, and might have been left
over from an earlier prototype of the PCL work. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: tcp_rtx_synack() can be called from process context
Laurent reported the enclosed report [1]
This bug triggers with following coditions:
0) Kernel built with CONFIG_DEBUG_PREEMPT=y
1) A new passive FastOpen TCP socket is created.
This FO socket waits for an ACK coming from client to be a complete
ESTABLISHED one.
2) A socket operation on this socket goes through lock_sock()
release_sock() dance.
3) While the socket is owned by the user in step 2),
a retransmit of the SYN is received and stored in socket backlog.
4) At release_sock() time, the socket backlog is processed while
in process context.
5) A SYNACK packet is cooked in response of the SYN retransmit.
6) -> tcp_rtx_synack() is called in process context.
Before blamed commit, tcp_rtx_synack() was always called from BH handler,
from a timer handler.
Fix this by using TCP_INC_STATS() & NET_INC_STATS()
which do not assume caller is in non preemptible context.
[1]
BUG: using __this_cpu_add() in preemptible [00000000] code: epollpep/2180
caller is tcp_rtx_synack.part.0+0x36/0xc0
CPU: 10 PID: 2180 Comm: epollpep Tainted: G OE 5.16.0-0.bpo.4-amd64 #1 Debian 5.16.12-1~bpo11+1
Hardware name: Supermicro SYS-5039MC-H8TRF/X11SCD-F, BIOS 1.7 11/23/2021
Call Trace:
<TASK>
dump_stack_lvl+0x48/0x5e
check_preemption_disabled+0xde/0xe0
tcp_rtx_synack.part.0+0x36/0xc0
tcp_rtx_synack+0x8d/0xa0
? kmem_cache_alloc+0x2e0/0x3e0
? apparmor_file_alloc_security+0x3b/0x1f0
inet_rtx_syn_ack+0x16/0x30
tcp_check_req+0x367/0x610
tcp_rcv_state_process+0x91/0xf60
? get_nohz_timer_target+0x18/0x1a0
? lock_timer_base+0x61/0x80
? preempt_count_add+0x68/0xa0
tcp_v4_do_rcv+0xbd/0x270
__release_sock+0x6d/0xb0
release_sock+0x2b/0x90
sock_setsockopt+0x138/0x1140
? __sys_getsockname+0x7e/0xc0
? aa_sk_perm+0x3e/0x1a0
__sys_setsockopt+0x198/0x1e0
__x64_sys_setsockopt+0x21/0x30
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae |