| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon: fix divide by zero in damon_get_intervals_score()
The current implementation allows having zero size regions with no special
reasons, but damon_get_intervals_score() gets crashed by divide by zero
when the region size is zero.
[ 29.403950] Oops: divide error: 0000 [#1] SMP NOPTI
This patch fixes the bug, but does not disallow zero size regions to keep
the backward compatibility since disallowing zero size regions might be a
breaking change for some users.
In addition, the same crash can happen when intervals_goal.access_bp is
zero so this should be fixed in stable trees as well. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/fhandle.c: fix a race in call of has_locked_children()
may_decode_fh() is calling has_locked_children() while holding no locks.
That's an oopsable race...
The rest of the callers are safe since they are holding namespace_sem and
are guaranteed a positive refcount on the mount in question.
Rename the current has_locked_children() to __has_locked_children(), make
it static and switch the fs/namespace.c users to it.
Make has_locked_children() a wrapper for __has_locked_children(), calling
the latter under read_seqlock_excl(&mount_lock). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between async reclaim worker and close_ctree()
Syzbot reported an assertion failure due to an attempt to add a delayed
iput after we have set BTRFS_FS_STATE_NO_DELAYED_IPUT in the fs_info
state:
WARNING: CPU: 0 PID: 65 at fs/btrfs/inode.c:3420 btrfs_add_delayed_iput+0x2f8/0x370 fs/btrfs/inode.c:3420
Modules linked in:
CPU: 0 UID: 0 PID: 65 Comm: kworker/u8:4 Not tainted 6.15.0-next-20250530-syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Workqueue: btrfs-endio-write btrfs_work_helper
RIP: 0010:btrfs_add_delayed_iput+0x2f8/0x370 fs/btrfs/inode.c:3420
Code: 4e ad 5d (...)
RSP: 0018:ffffc9000213f780 EFLAGS: 00010293
RAX: ffffffff83c635b7 RBX: ffff888058920000 RCX: ffff88801c769e00
RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000000
RBP: 0000000000000001 R08: ffff888058921b67 R09: 1ffff1100b12436c
R10: dffffc0000000000 R11: ffffed100b12436d R12: 0000000000000001
R13: dffffc0000000000 R14: ffff88807d748000 R15: 0000000000000100
FS: 0000000000000000(0000) GS:ffff888125c53000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00002000000bd038 CR3: 000000006a142000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
btrfs_put_ordered_extent+0x19f/0x470 fs/btrfs/ordered-data.c:635
btrfs_finish_one_ordered+0x11d8/0x1b10 fs/btrfs/inode.c:3312
btrfs_work_helper+0x399/0xc20 fs/btrfs/async-thread.c:312
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
This can happen due to a race with the async reclaim worker like this:
1) The async metadata reclaim worker enters shrink_delalloc(), which calls
btrfs_start_delalloc_roots() with an nr_pages argument that has a value
less than LONG_MAX, and that in turn enters start_delalloc_inodes(),
which sets the local variable 'full_flush' to false because
wbc->nr_to_write is less than LONG_MAX;
2) There it finds inode X in a root's delalloc list, grabs a reference for
inode X (with igrab()), and triggers writeback for it with
filemap_fdatawrite_wbc(), which creates an ordered extent for inode X;
3) The unmount sequence starts from another task, we enter close_ctree()
and we flush the workqueue fs_info->endio_write_workers, which waits
for the ordered extent for inode X to complete and when dropping the
last reference of the ordered extent, with btrfs_put_ordered_extent(),
when we call btrfs_add_delayed_iput() we don't add the inode to the
list of delayed iputs because it has a refcount of 2, so we decrement
it to 1 and return;
4) Shortly after at close_ctree() we call btrfs_run_delayed_iputs() which
runs all delayed iputs, and then we set BTRFS_FS_STATE_NO_DELAYED_IPUT
in the fs_info state;
5) The async reclaim worker, after calling filemap_fdatawrite_wbc(), now
calls btrfs_add_delayed_iput() for inode X and there we trigger an
assertion failure since the fs_info state has the flag
BTRFS_FS_STATE_NO_DELAYED_IPUT set.
Fix this by setting BTRFS_FS_STATE_NO_DELAYED_IPUT only after we wait for
the async reclaim workers to finish, after we call cancel_work_sync() for
them at close_ctree(), and by running delayed iputs after wait for the
reclaim workers to finish and before setting the bit.
This race was recently introduced by commit 19e60b2a95f5 ("btrfs: add
extra warning if delayed iput is added when it's not allowed"). Without
the new validation at btrfs_add_delayed_iput(),
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Avoid divide by zero by initializing dummy pitch to 1
[Why]
If the dummy values in `populate_dummy_dml_surface_cfg()` aren't updated
then they can lead to a divide by zero in downstream callers like
CalculateVMAndRowBytes()
[How]
Initialize dummy value to a value to avoid divide by zero. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix race between nfsd registration and exports_proc
As of now nfsd calls create_proc_exports_entry() at start of init_nfsd
and cleanup by remove_proc_entry() at last of exit_nfsd.
Which causes kernel OOPs if there is race between below 2 operations:
(i) exportfs -r
(ii) mount -t nfsd none /proc/fs/nfsd
for 5.4 kernel ARM64:
CPU 1:
el1_irq+0xbc/0x180
arch_counter_get_cntvct+0x14/0x18
running_clock+0xc/0x18
preempt_count_add+0x88/0x110
prep_new_page+0xb0/0x220
get_page_from_freelist+0x2d8/0x1778
__alloc_pages_nodemask+0x15c/0xef0
__vmalloc_node_range+0x28c/0x478
__vmalloc_node_flags_caller+0x8c/0xb0
kvmalloc_node+0x88/0xe0
nfsd_init_net+0x6c/0x108 [nfsd]
ops_init+0x44/0x170
register_pernet_operations+0x114/0x270
register_pernet_subsys+0x34/0x50
init_nfsd+0xa8/0x718 [nfsd]
do_one_initcall+0x54/0x2e0
CPU 2 :
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
PC is at : exports_net_open+0x50/0x68 [nfsd]
Call trace:
exports_net_open+0x50/0x68 [nfsd]
exports_proc_open+0x2c/0x38 [nfsd]
proc_reg_open+0xb8/0x198
do_dentry_open+0x1c4/0x418
vfs_open+0x38/0x48
path_openat+0x28c/0xf18
do_filp_open+0x70/0xe8
do_sys_open+0x154/0x248
Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu().
and same is happening on latest 6.14 kernel as well:
[ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty
...
[ 285.455918] Unable to handle kernel paging request at virtual address 00001f4800001f48
...
[ 285.464902] pc : cache_seq_next_rcu+0x78/0xa4
...
[ 285.469695] Call trace:
[ 285.470083] cache_seq_next_rcu+0x78/0xa4 (P)
[ 285.470488] seq_read+0xe0/0x11c
[ 285.470675] proc_reg_read+0x9c/0xf0
[ 285.470874] vfs_read+0xc4/0x2fc
[ 285.471057] ksys_read+0x6c/0xf4
[ 285.471231] __arm64_sys_read+0x1c/0x28
[ 285.471428] invoke_syscall+0x44/0x100
[ 285.471633] el0_svc_common.constprop.0+0x40/0xe0
[ 285.471870] do_el0_svc_compat+0x1c/0x34
[ 285.472073] el0_svc_compat+0x2c/0x80
[ 285.472265] el0t_32_sync_handler+0x90/0x140
[ 285.472473] el0t_32_sync+0x19c/0x1a0
[ 285.472887] Code: f9400885 93407c23 937d7c27 11000421 (f86378a3)
[ 285.473422] ---[ end trace 0000000000000000 ]---
It reproduced simply with below script:
while [ 1 ]
do
/exportfs -r
done &
while [ 1 ]
do
insmod /nfsd.ko
mount -t nfsd none /proc/fs/nfsd
umount /proc/fs/nfsd
rmmod nfsd
done &
So exporting interfaces to user space shall be done at last and
cleanup at first place.
With change there is no Kernel OOPs. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/rt: Fix race in push_rt_task
Overview
========
When a CPU chooses to call push_rt_task and picks a task to push to
another CPU's runqueue then it will call find_lock_lowest_rq method
which would take a double lock on both CPUs' runqueues. If one of the
locks aren't readily available, it may lead to dropping the current
runqueue lock and reacquiring both the locks at once. During this window
it is possible that the task is already migrated and is running on some
other CPU. These cases are already handled. However, if the task is
migrated and has already been executed and another CPU is now trying to
wake it up (ttwu) such that it is queued again on the runqeue
(on_rq is 1) and also if the task was run by the same CPU, then the
current checks will pass even though the task was migrated out and is no
longer in the pushable tasks list.
Crashes
=======
This bug resulted in quite a few flavors of crashes triggering kernel
panics with various crash signatures such as assert failures, page
faults, null pointer dereferences, and queue corruption errors all
coming from scheduler itself.
Some of the crashes:
-> kernel BUG at kernel/sched/rt.c:1616! BUG_ON(idx >= MAX_RT_PRIO)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? pick_next_task_rt+0x6e/0x1d0
? do_error_trap+0x64/0xa0
? pick_next_task_rt+0x6e/0x1d0
? exc_invalid_op+0x4c/0x60
? pick_next_task_rt+0x6e/0x1d0
? asm_exc_invalid_op+0x12/0x20
? pick_next_task_rt+0x6e/0x1d0
__schedule+0x5cb/0x790
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: kernel NULL pointer dereference, address: 00000000000000c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? __warn+0x8a/0xe0
? exc_page_fault+0x3d6/0x520
? asm_exc_page_fault+0x1e/0x30
? pick_next_task_rt+0xb5/0x1d0
? pick_next_task_rt+0x8c/0x1d0
__schedule+0x583/0x7e0
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: unable to handle page fault for address: ffff9464daea5900
kernel BUG at kernel/sched/rt.c:1861! BUG_ON(rq->cpu != task_cpu(p))
-> kernel BUG at kernel/sched/rt.c:1055! BUG_ON(!rq->nr_running)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? dequeue_top_rt_rq+0xa2/0xb0
? do_error_trap+0x64/0xa0
? dequeue_top_rt_rq+0xa2/0xb0
? exc_invalid_op+0x4c/0x60
? dequeue_top_rt_rq+0xa2/0xb0
? asm_exc_invalid_op+0x12/0x20
? dequeue_top_rt_rq+0xa2/0xb0
dequeue_rt_entity+0x1f/0x70
dequeue_task_rt+0x2d/0x70
__schedule+0x1a8/0x7e0
? blk_finish_plug+0x25/0x40
schedule+0x3c/0xb0
futex_wait_queue_me+0xb6/0x120
futex_wait+0xd9/0x240
do_futex+0x344/0xa90
? get_mm_exe_file+0x30/0x60
? audit_exe_compare+0x58/0x70
? audit_filter_rules.constprop.26+0x65e/0x1220
__x64_sys_futex+0x148/0x1f0
do_syscall_64+0x30/0x80
entry_SYSCALL_64_after_hwframe+0x62/0xc7
-> BUG: unable to handle page fault for address: ffff8cf3608bc2c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? spurious_kernel_fault+0x171/0x1c0
? exc_page_fault+0x3b6/0x520
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? asm_exc_page_fault+0x1e/0x30
? _cond_resched+0x15/0x30
? futex_wait_queue_me+0xc8/0x120
? futex_wait+0xd9/0x240
? try_to_wake_up+0x1b8/0x490
? futex_wake+0x78/0x160
? do_futex+0xcd/0xa90
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? plist_del+0x6a/0xd0
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? dequeue_pushable_task+0x20/0x70
? __schedule+0x382/0x7e0
? asm_sysvec_reschedule_i
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (ftsteutates) Fix TOCTOU race in fts_read()
In the fts_read() function, when handling hwmon_pwm_auto_channels_temp,
the code accesses the shared variable data->fan_source[channel] twice
without holding any locks. It is first checked against
FTS_FAN_SOURCE_INVALID, and if the check passes, it is read again
when used as an argument to the BIT() macro.
This creates a Time-of-Check to Time-of-Use (TOCTOU) race condition.
Another thread executing fts_update_device() can modify the value of
data->fan_source[channel] between the check and its use. If the value
is changed to FTS_FAN_SOURCE_INVALID (0xff) during this window, the
BIT() macro will be called with a large shift value (BIT(255)).
A bit shift by a value greater than or equal to the type width is
undefined behavior and can lead to a crash or incorrect values being
returned to userspace.
Fix this by reading data->fan_source[channel] into a local variable
once, eliminating the race condition. Additionally, add a bounds check
to ensure the value is less than BITS_PER_LONG before passing it to
the BIT() macro, making the code more robust against undefined behavior.
This possible bug was found by an experimental static analysis tool
developed by our team. |
| Kernel or driver software installed on a Guest VM may post improper commands to the GPU Firmware to exploit a TOCTOU race condition and trigger a read and/or write of data outside the allotted memory escaping the virtual machine. |
| The verify function in Encryption/Symmetric.php in Malcolm Fell jwt before 1.0.3 does not use a timing-safe function for hash comparison, which allows attackers to spoof signatures via a timing attack. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: spi-mem: Add fix to avoid divide error
For some SPI flash memory operations, dummy bytes are not mandatory. For
example, in Winbond SPINAND flash memory devices, the `write_cache` and
`update_cache` operation variants have zero dummy bytes. Calculating the
duration for SPI memory operations with zero dummy bytes causes
a divide error when `ncycles` is calculated in the
spi_mem_calc_op_duration().
Add changes to skip the 'ncylcles' calculation for zero dummy bytes.
Following divide error is fixed by this change:
Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI
...
? do_trap+0xdb/0x100
? do_error_trap+0x75/0xb0
? spi_mem_calc_op_duration+0x56/0xb0
? exc_divide_error+0x3b/0x70
? spi_mem_calc_op_duration+0x56/0xb0
? asm_exc_divide_error+0x1b/0x20
? spi_mem_calc_op_duration+0x56/0xb0
? spinand_select_op_variant+0xee/0x190 [spinand]
spinand_match_and_init+0x13e/0x1a0 [spinand]
spinand_manufacturer_match+0x6e/0xa0 [spinand]
spinand_probe+0x357/0x7f0 [spinand]
? kernfs_activate+0x87/0xd0
spi_mem_probe+0x7a/0xb0
spi_probe+0x7d/0x130 |
| Nagios XI versions prior to 2011R1.9 contain privilege escalation vulnerabilities in the scripts that install or update system crontab entries. Due to time-of-check/time-of-use race conditions and missing synchronization or final-path validation, a local low-privileged user could manipulate filesystem state during crontab installation to influence the files or commands executed with elevated privileges, resulting in execution with higher privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix race between io_uring_cmd_complete_in_task and ublk_cancel_cmd
ublk_cancel_cmd() calls io_uring_cmd_done() to complete uring_cmd, but
we may have scheduled task work via io_uring_cmd_complete_in_task() for
dispatching request, then kernel crash can be triggered.
Fix it by not trying to canceling the command if ublk block request is
started. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: qfq: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of qfq, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
This patch checks whether the class was already added to the agg->active
list (cl_is_active) before doing the addition to cater for the reentrant
case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7mSgnp-TEJJbw@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: drr: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of drr, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
In addition to checking for qlen being zero, this patch checks whether the
class was already added to the active_list (cl_is_active) before adding
to the list to cover for the reentrant case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7mSgnp-TEJJbw@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_alloc: fix race condition in unaccepted memory handling
The page allocator tracks the number of zones that have unaccepted memory
using static_branch_enc/dec() and uses that static branch in hot paths to
determine if it needs to deal with unaccepted memory.
Borislav and Thomas pointed out that the tracking is racy: operations on
static_branch are not serialized against adding/removing unaccepted pages
to/from the zone.
Sanity checks inside static_branch machinery detects it:
WARNING: CPU: 0 PID: 10 at kernel/jump_label.c:276 __static_key_slow_dec_cpuslocked+0x8e/0xa0
The comment around the WARN() explains the problem:
/*
* Warn about the '-1' case though; since that means a
* decrement is concurrent with a first (0->1) increment. IOW
* people are trying to disable something that wasn't yet fully
* enabled. This suggests an ordering problem on the user side.
*/
The effect of this static_branch optimization is only visible on
microbenchmark.
Instead of adding more complexity around it, remove it altogether. |
| In the Linux kernel, the following vulnerability has been resolved:
pwm: mediatek: Prevent divide-by-zero in pwm_mediatek_config()
With CONFIG_COMPILE_TEST && !CONFIG_HAVE_CLK, pwm_mediatek_config() has a
divide-by-zero in the following line:
do_div(resolution, clk_get_rate(pc->clk_pwms[pwm->hwpwm]));
due to the fact that the !CONFIG_HAVE_CLK version of clk_get_rate()
returns zero.
This is presumably just a theoretical problem: COMPILE_TEST overrides
the dependency on RALINK which would select COMMON_CLK. Regardless it's
a good idea to check for the error explicitly to avoid divide-by-zero.
Fixes the following warning:
drivers/pwm/pwm-mediatek.o: warning: objtool: .text: unexpected end of section
[ukleinek: s/CONFIG_CLK/CONFIG_HAVE_CLK/] |
| Inappropriate implementation in DevTools in Google Chrome prior to 126.0.6478.182 allowed a remote attacker to potentially perform a sandbox escape via a crafted HTML page. (Chromium security severity: High) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/gup: fix FOLL_FORCE COW security issue and remove FOLL_COW
Ever since the Dirty COW (CVE-2016-5195) security issue happened, we know
that FOLL_FORCE can be possibly dangerous, especially if there are races
that can be exploited by user space.
Right now, it would be sufficient to have some code that sets a PTE of a
R/O-mapped shared page dirty, in order for it to erroneously become
writable by FOLL_FORCE. The implications of setting a write-protected PTE
dirty might not be immediately obvious to everyone.
And in fact ever since commit 9ae0f87d009c ("mm/shmem: unconditionally set
pte dirty in mfill_atomic_install_pte"), we can use UFFDIO_CONTINUE to map
a shmem page R/O while marking the pte dirty. This can be used by
unprivileged user space to modify tmpfs/shmem file content even if the
user does not have write permissions to the file, and to bypass memfd
write sealing -- Dirty COW restricted to tmpfs/shmem (CVE-2022-2590).
To fix such security issues for good, the insight is that we really only
need that fancy retry logic (FOLL_COW) for COW mappings that are not
writable (!VM_WRITE). And in a COW mapping, we really only broke COW if
we have an exclusive anonymous page mapped. If we have something else
mapped, or the mapped anonymous page might be shared (!PageAnonExclusive),
we have to trigger a write fault to break COW. If we don't find an
exclusive anonymous page when we retry, we have to trigger COW breaking
once again because something intervened.
Let's move away from this mandatory-retry + dirty handling and rely on our
PageAnonExclusive() flag for making a similar decision, to use the same
COW logic as in other kernel parts here as well. In case we stumble over
a PTE in a COW mapping that does not map an exclusive anonymous page, COW
was not properly broken and we have to trigger a fake write-fault to break
COW.
Just like we do in can_change_pte_writable() added via commit 64fe24a3e05e
("mm/mprotect: try avoiding write faults for exclusive anonymous pages
when changing protection") and commit 76aefad628aa ("mm/mprotect: fix
soft-dirty check in can_change_pte_writable()"), take care of softdirty
and uffd-wp manually.
For example, a write() via /proc/self/mem to a uffd-wp-protected range has
to fail instead of silently granting write access and bypassing the
userspace fault handler. Note that FOLL_FORCE is not only used for debug
access, but also triggered by applications without debug intentions, for
example, when pinning pages via RDMA.
This fixes CVE-2022-2590. Note that only x86_64 and aarch64 are
affected, because only those support CONFIG_HAVE_ARCH_USERFAULTFD_MINOR.
Fortunately, FOLL_COW is no longer required to handle FOLL_FORCE. So
let's just get rid of it.
Thanks to Nadav Amit for pointing out that the pte_dirty() check in
FOLL_FORCE code is problematic and might be exploitable.
Note 1: We don't check for the PTE being dirty because it doesn't matter
for making a "was COWed" decision anymore, and whoever modifies the
page has to set the page dirty either way.
Note 2: Kernels before extended uffd-wp support and before
PageAnonExclusive (< 5.19) can simply revert the problematic
commit instead and be safe regarding UFFDIO_CONTINUE. A backport to
v5.19 requires minor adjustments due to lack of
vma_soft_dirty_enabled(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix a data-race around bpf_jit_limit.
While reading bpf_jit_limit, it can be changed concurrently via sysctl,
WRITE_ONCE() in __do_proc_doulongvec_minmax(). The size of bpf_jit_limit
is long, so we need to add a paired READ_ONCE() to avoid load-tearing. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS/localio: Fix a race in nfs_local_open_fh()
Once the clp->cl_uuid.lock has been dropped, another CPU could come in
and free the struct nfsd_file that was just added. To prevent that from
happening, take the RCU read lock before dropping the spin lock. |